Taghinejad Hossein, Taghinejad Mohammad, Eftekhar Ali A, Li Zhipeng, West Matthew P, Javani Mohammad H, Abdollahramezani Sajjad, Zhang Xiang, Tian Mengkun, Johnson-Averette Thomas, Ajayan Pulickel M, Vogel Eric M, Shi Su-Fei, Cai Wenshan, Adibi Ali
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.
ACS Nano. 2020 May 26;14(5):6323-6330. doi: 10.1021/acsnano.0c02885. Epub 2020 May 8.
Heterostructures of two-dimensional transition metal dichalcogenides (TMDs) can offer a plethora of opportunities in condensed matter physics, materials science, and device engineering. However, despite state-of-the-art demonstrations, most current methods lack enough degrees of freedom for the synthesis of heterostructures with engineerable properties. Here, we demonstrate that combining a postgrowth chalcogen-swapping procedure with the standard lithography enables the realization of lateral TMD heterostructures with controllable dimensions and spatial profiles in predefined locations on a substrate. Indeed, our protocol receives a monolithic TMD monolayer (, MoSe) as the input and delivers lateral heterostructures (, MoSe-MoS) with fully engineerable morphologies. In addition, through establishing MoSSe-MoSSe lateral junctions, our synthesis protocol offers an extra degree of freedom for engineering the band gap energies up to ∼320 meV on each side of the heterostructure junction changing and independently. Our electron microscopy analysis reveals that such continuous tuning stems from the random intermixing of sulfur and selenium atoms following the chalcogen swapping. We believe that, by adding an engineering flavor to the synthesis of TMD heterostructures, our study lowers the barrier for the integration of two-dimensional materials into practical optoelectronic platforms.
二维过渡金属二硫属化物(TMDs)的异质结构在凝聚态物理、材料科学和器件工程领域提供了大量机会。然而,尽管有最先进的示范,但目前大多数方法在合成具有可设计特性的异质结构时缺乏足够的自由度。在此,我们证明将生长后硫属元素交换程序与标准光刻技术相结合,能够在衬底上的预定义位置实现具有可控尺寸和空间分布的横向TMD异质结构。实际上,我们的方案以单片TMD单层(例如,MoSe)作为输入,并产出具有完全可设计形态的横向异质结构(例如,MoSe-MoS)。此外,通过建立MoSSe-MoSSe横向结,我们的合成方案提供了额外的自由度,可在异质结构结两侧独立改变 和 来调控带隙能量,最高可达约320 meV。我们的电子显微镜分析表明,这种连续调谐源于硫属元素交换后硫和硒原子的随机混合。我们相信,通过为TMD异质结构的合成增添工程化元素,我们的研究降低了将二维材料集成到实际光电子平台的障碍。