MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK.
Novartis Pharma AG, Basel, Switzerland.
BMC Med Res Methodol. 2021 Nov 14;21(1):250. doi: 10.1186/s12874-021-01409-4.
Novartis and the University of Oxford's Big Data Institute (BDI) have established a research alliance with the aim to improve health care and drug development by making it more efficient and targeted. Using a combination of the latest statistical machine learning technology with an innovative IT platform developed to manage large volumes of anonymised data from numerous data sources and types we plan to identify novel patterns with clinical relevance which cannot be detected by humans alone to identify phenotypes and early predictors of patient disease activity and progression.
The collaboration focuses on highly complex autoimmune diseases and develops a computational framework to assemble a research-ready dataset across numerous modalities. For the Multiple Sclerosis (MS) project, the collaboration has anonymised and integrated phase II to phase IV clinical and imaging trial data from ≈35,000 patients across all clinical phenotypes and collected in more than 2200 centres worldwide. For the "IL-17" project, the collaboration has anonymised and integrated clinical and imaging data from over 30 phase II and III Cosentyx clinical trials including more than 15,000 patients, suffering from four autoimmune disorders (Psoriasis, Axial Spondyloarthritis, Psoriatic arthritis (PsA) and Rheumatoid arthritis (RA)).
A fundamental component of successful data analysis and the collaborative development of novel machine learning methods on these rich data sets has been the construction of a research informatics framework that can capture the data at regular intervals where images could be anonymised and integrated with the de-identified clinical data, quality controlled and compiled into a research-ready relational database which would then be available to multi-disciplinary analysts. The collaborative development from a group of software developers, data wranglers, statisticians, clinicians, and domain scientists across both organisations has been key. This framework is innovative, as it facilitates collaborative data management and makes a complicated clinical trial data set from a pharmaceutical company available to academic researchers who become associated with the project.
An informatics framework has been developed to capture clinical trial data into a pipeline of anonymisation, quality control, data exploration, and subsequent integration into a database. Establishing this framework has been integral to the development of analytical tools.
诺华公司(Novartis)和牛津大学大数据研究所(BDI)建立了研究联盟,旨在通过提高效率和针对性来改善医疗保健和药物开发。我们计划利用最新的统计机器学习技术与创新的 IT 平台相结合,该平台旨在管理来自众多数据源和类型的大量匿名数据,以识别具有临床相关性的新的模式,这些模式单凭人类无法检测到,从而识别出患者疾病活动和进展的表型和早期预测指标。
该合作专注于高度复杂的自身免疫性疾病,并开发了一种计算框架,以便在众多模态中组装一个可用于研究的数据集。对于多发性硬化症(MS)项目,合作方对来自全球 2200 多个中心的约 35000 名具有所有临床表型的患者的 II 期至 IV 期临床和影像学试验数据进行了匿名化和整合,并收集了数据。对于“IL-17”项目,合作方对来自 30 多项 Cosentyx 临床试验的临床和影像学数据进行了匿名化和整合,其中包括 15000 多名患有四种自身免疫性疾病(银屑病、中轴型脊柱关节炎、银屑病关节炎(PsA)和类风湿关节炎(RA))的患者的数据。
成功进行数据分析和在这些丰富的数据集上开发新型机器学习方法的一个基本组成部分是构建一个研究信息学框架,该框架可以定期捕获图像可以匿名化并与去识别的临床数据集成、质量控制并编译到一个可用于多学科分析人员的研究就绪关系数据库中的数据。来自两个组织的软件开发人员、数据整理员、统计学家、临床医生和领域科学家的合作开发是关键。该框架具有创新性,因为它促进了协作数据管理,并使制药公司的复杂临床试验数据集可供与该项目相关联的学术研究人员使用。
已经开发了一个信息学框架,将临床试验数据捕获到一个匿名化、质量控制、数据探索的流水线中,然后将其集成到数据库中。建立这个框架是开发分析工具的关键。