Suppr超能文献

使用RVdriver从RNA变异等位基因频率中鉴定癌症基因。

Cancer gene identification from RNA variant allelic frequencies using RVdriver.

作者信息

Black James R M, Jones Thomas P, Martínez-Ruiz Carlos, Litovchenko Maria, Puttick Clare, Swanton Charles, McGranahan Nicholas

机构信息

Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.

Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK.

出版信息

Genome Biol. 2025 Jun 13;26(1):165. doi: 10.1186/s13059-025-03557-y.

Abstract

Existing approaches to identifying cancer genes rely overwhelmingly on DNA sequencing data. Here, we introduce RVdriver, a computational tool that leverages paired bulk genomic and transcriptomic data to classify RNA variant allele frequencies (VAFs) of non-synonymous mutations relative to a synonymous mutation background. We analyze 7882 paired exomes and transcriptomes from 31 cancer types and identify novel, as well as known, cancer genes, complementing other DNA-based approaches. Furthermore, RNA VAFs of individual mutations are able to distinguish "driver" from "passenger" mutations within established cancer genes. This approach highlights the value of multi-omic approaches for cancer gene discovery.

摘要

现有的癌症基因识别方法绝大多数依赖于DNA测序数据。在此,我们引入了RVdriver,这是一种计算工具,它利用配对的大量基因组和转录组数据,相对于同义突变背景对非同义突变的RNA变异等位基因频率(VAF)进行分类。我们分析了来自31种癌症类型的7882对外显子组和转录组,并识别出了新的以及已知的癌症基因,对其他基于DNA的方法起到了补充作用。此外,单个突变的RNA VAF能够在已确定的癌症基因中区分“驱动”突变和“乘客”突变。这种方法突出了多组学方法在癌症基因发现中的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7212/12164115/ebc07410da75/13059_2025_3557_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验