Black James R M, Jones Thomas P, Martínez-Ruiz Carlos, Litovchenko Maria, Puttick Clare, Swanton Charles, McGranahan Nicholas
Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK.
Genome Biol. 2025 Jun 13;26(1):165. doi: 10.1186/s13059-025-03557-y.
Existing approaches to identifying cancer genes rely overwhelmingly on DNA sequencing data. Here, we introduce RVdriver, a computational tool that leverages paired bulk genomic and transcriptomic data to classify RNA variant allele frequencies (VAFs) of non-synonymous mutations relative to a synonymous mutation background. We analyze 7882 paired exomes and transcriptomes from 31 cancer types and identify novel, as well as known, cancer genes, complementing other DNA-based approaches. Furthermore, RNA VAFs of individual mutations are able to distinguish "driver" from "passenger" mutations within established cancer genes. This approach highlights the value of multi-omic approaches for cancer gene discovery.
现有的癌症基因识别方法绝大多数依赖于DNA测序数据。在此,我们引入了RVdriver,这是一种计算工具,它利用配对的大量基因组和转录组数据,相对于同义突变背景对非同义突变的RNA变异等位基因频率(VAF)进行分类。我们分析了来自31种癌症类型的7882对外显子组和转录组,并识别出了新的以及已知的癌症基因,对其他基于DNA的方法起到了补充作用。此外,单个突变的RNA VAF能够在已确定的癌症基因中区分“驱动”突变和“乘客”突变。这种方法突出了多组学方法在癌症基因发现中的价值。