Chu Hung, Ferreira Rosaria J, Lokhorst Chantal, Douwes Johannes M, Haarman Meindina G, Willems Tineke P, Berger Rolf M F, Ploegstra Mark-Jan
Donald Smits Center for Information and Technology, University of Groningen, Groningen, The Netherlands.
Center for Congenital Heart Diseases, Department of Paediatric Cardiology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, Groningen, 9700 RB, The Netherlands.
Int J Cardiovasc Imaging. 2025 Jun 14. doi: 10.1007/s10554-025-03434-6.
Pulmonary arterial hypertension (PAH) significantly affects the pulmonary vasculature, requiring accurate estimation of mean pulmonary arterial pressure (mPAP) and pulmonary vascular resistance index (PVRi). Although cardiac catheterization is the gold standard for these measurements, it poses risks, especially in children. This pilot study explored how machine learning (ML) can predict pulmonary hemodynamics from non-invasive cardiac magnetic resonance (CMR) cine images in pediatric PAH patients.
A retrospective analysis of 40 CMR studies from children with PAH using a four-fold stratified group cross-validation was conducted. The endpoints were severity profiles of mPAP and PVRi, categorised as 'low', 'high', and 'extreme'. Deep learning (DL) and traditional ML models were optimized through hyperparameter tuning. Receiver operating characteristic curves and area under the curve (AUC) were used as the primary evaluation metrics.
DL models utilizing CMR cine imaging showed the best potential for predicting mPAP and PVRi severity profiles on test folds (AUC=0.82 and AUC=0.73). True positive rates (TPR) for predicting low, high, and extreme mPAP were 5/10, 11/16, and 11/14, respectively. TPR for predicting low, high, and extreme PVRi were 5/13, 14/15, and 7/12, respectively. Optimal DL models only used spatial patterns from consecutive CMR cine frames to maximize prediction performance.
This exploratory pilot study demonstrates the potential of DL leveraging CMR imaging for non-invasive prediction of mPAP and PVRi in pediatric PAH. While preliminary, these findings may lay the groundwork for future advancements in CMR imaging in pediatric PAH, offering a pathway to safer disease monitoring and reduced reliance on invasive cardiac catheterization.
肺动脉高压(PAH)会显著影响肺血管系统,需要准确估计平均肺动脉压(mPAP)和肺血管阻力指数(PVRi)。尽管心导管检查是这些测量的金标准,但它存在风险,尤其是在儿童中。这项初步研究探讨了机器学习(ML)如何从儿科PAH患者的无创心脏磁共振(CMR)电影图像中预测肺血流动力学。
对40例PAH患儿的CMR研究进行回顾性分析,采用四重分层组交叉验证。终点是mPAP和PVRi的严重程度概况,分为“低”、“高”和“极高”。通过超参数调整对深度学习(DL)和传统ML模型进行优化。采用受试者操作特征曲线和曲线下面积(AUC)作为主要评估指标。
利用CMR电影成像的DL模型在测试组中显示出预测mPAP和PVRi严重程度概况的最佳潜力(AUC=0.82和AUC=0.73)。预测低、高和极高mPAP的真阳性率(TPR)分别为5/10、11/16和11/14。预测低、高和极高PVRi的TPR分别为5/13、14/15和7/12。最佳DL模型仅使用连续CMR电影帧的空间模式来最大化预测性能。
这项探索性初步研究证明了DL利用CMR成像对儿科PAH患者的mPAP和PVRi进行无创预测的潜力。虽然这些发现是初步的,但可能为儿科PAH中CMR成像的未来进展奠定基础,为更安全的疾病监测和减少对侵入性心导管检查的依赖提供途径。