Suppr超能文献

FFLUNet:用于脑肿瘤分割的特征融合轻量级UNet

FFLUNet: Feature Fused Lightweight UNet for brain tumor segmentation.

作者信息

Kundu Surajit, Dutta Sandip, Mukhopadhyay Jayanta, Chakravorty Nishant

机构信息

School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, 721302, WB, India.

Jadavpur University, Kolkata, 700032, WB, India.

出版信息

Comput Biol Med. 2025 Aug;194:110460. doi: 10.1016/j.compbiomed.2025.110460. Epub 2025 Jun 14.

Abstract

Brain tumors, particularly glioblastoma multiforme, are considered one of the most threatening types of tumors in neuro-oncology. Segmenting brain tumors is a crucial part of medical imaging. It plays a key role in diagnosing conditions, planning treatments, and keeping track of patients' progress. This paper presents a novel lightweight deep convolutional neural network (CNN) model specifically designed for accurate and efficient brain tumor segmentation from magnetic resonance imaging (MRI) scans. Our model leverages a streamlined architecture that reduces computational complexity while maintaining high segmentation accuracy. We have introduced several novel approaches, including optimized convolutional layers that capture both local and global features with minimal parameters. A layerwise adaptive weighting feature fusion technique is implemented that enhances comprehensive feature representation. By incorporating shifted windowing, the model achieves better generalization across data variations. Dynamic weighting is introduced in skip connections that allows backpropagation to determine the ideal balance between semantic and positional features. To evaluate our approach, we conducted experiments on publicly available MRI datasets and compared our model against state-of-the-art segmentation methods. Our lightweight model has an efficient architecture with 1.45 million parameters - 95% fewer than nnUNet (30.78M), 91% fewer than standard UNet (16.21M), and 85% fewer than a lightweight hybrid CNN-transformer network (Liu et al., 2024) (9.9M). Coupled with a 4.9× faster GPU inference time (0.904 ± 0.002 s vs. nnUNet's 4.416 ± 0.004 s), the design enables real-time deployment on resource-constrained devices while maintaining competitive segmentation accuracy. Code is available at: FFLUNet.

摘要

脑肿瘤,尤其是多形性胶质母细胞瘤,被认为是神经肿瘤学中最具威胁性的肿瘤类型之一。脑肿瘤分割是医学成像的关键部分。它在疾病诊断、治疗规划以及跟踪患者病情进展方面发挥着关键作用。本文提出了一种新颖的轻量级深度卷积神经网络(CNN)模型,该模型专门设计用于从磁共振成像(MRI)扫描中准确且高效地分割脑肿瘤。我们的模型采用了简化的架构,在保持高分割精度的同时降低了计算复杂度。我们引入了几种新颖的方法,包括优化的卷积层,该层能用最少的参数捕捉局部和全局特征。实施了一种逐层自适应加权特征融合技术,增强了综合特征表示。通过结合移位窗口,该模型在数据变化中实现了更好的泛化。在跳跃连接中引入了动态加权,使反向传播能够确定语义和位置特征之间的理想平衡。为了评估我们的方法,我们在公开可用的MRI数据集上进行了实验,并将我们的模型与最先进的分割方法进行了比较。我们的轻量级模型具有高效的架构,有145万个参数——比nnUNet(3078万)少95%,比标准UNet(1621万)少91%,比轻量级混合CNN-Transformer网络(Liu等人,2024)(990万)少85%。再加上快4.9倍的GPU推理时间(0.904±0.002秒,而nnUNet为4.416±0.004秒),该设计能够在资源受限的设备上进行实时部署,同时保持有竞争力的分割精度。代码可在以下网址获取:FFLUNet。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验