Mikroulis Theodoros, Rodríguez-Muñiz Gemma M, Tzeli Demeter, Rotas Georgios, Miranda Miguel A, Vougioukalakis Georgios C
Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece.
Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, 46022, Valencia, Spain.
Chemistry. 2025 Jul 17;31(40):e202404418. doi: 10.1002/chem.202404418. Epub 2025 Jun 27.
Fullerene-based donor-acceptor (D-A) dyads have been extensively studied for their unique electronic properties, with applications in photoinduced energy conversion devices. In these systems, dynamic quenching of the excited donor's emission occurs, via energy or electron transfer to the fullerene acceptor. However, there are no reports on fullerene dyads bearing chemiluminescent donor analogues. In this context, the synthesis of two luminol-fullerene D-A dyads, bridged with alkyl chains of different lengths, is reported herein. The electronic communication between the two moieties was thoroughly evaluated, following either the photo- or chemi-excitation of the linked units. Steady state and time-resolved absorption studies, combined with emission techniques, were employed to monitor the deactivation fate of excited species. In general, a significant quenching of the excited luminol-derived emission signals was observed, revealing detectable intramolecular interactions between the two moieties. Unlike what is usually observed in other luminol-based D-A systems, quenching of the excited species generated upon photo- and chemi-excitation of the luminol-fullerene dyads is attributed to electron rather than energy transfer. This was found to be consistent with the estimated Gibbs energy of photoinduced electron transfer and with DFT theoretical calculations.
基于富勒烯的供体-受体(D-A)二元体系因其独特的电子性质而被广泛研究,并应用于光诱导能量转换装置。在这些体系中,激发态供体的发射会通过能量或电子转移至富勒烯受体而发生动态猝灭。然而,尚无关于含有化学发光供体类似物的富勒烯二元体系的报道。在此背景下,本文报道了两种通过不同长度烷基链桥连的鲁米诺-富勒烯D-A二元体系的合成。在连接单元的光激发或化学激发之后,对两个部分之间的电子通讯进行了全面评估。采用稳态和时间分辨吸收研究,并结合发射技术,来监测激发态物种的失活命运。总体而言,观察到激发态鲁米诺衍生发射信号有显著猝灭,这揭示了两个部分之间可检测到的分子内相互作用。与通常在其他基于鲁米诺的D-A体系中观察到的情况不同,鲁米诺-富勒烯二元体系在光激发和化学激发时产生的激发态物种的猝灭归因于电子转移而非能量转移。这被发现与光诱导电子转移的估计吉布斯自由能以及密度泛函理论计算结果一致。