Kuik C, de Boer C, van Hoogstraten S W G, Freulings K, Honing M, Arts J J C, Cillero-Pastor B
Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, the Netherlands.
Department of Orthopaedic Surgery, Laboratory for Experimental Orthopaedics, CAPHRI, Maastricht University Medical Center, Maastricht, the Netherlands.
Biofilm. 2025 May 27;9:100287. doi: 10.1016/j.bioflm.2025.100287. eCollection 2025 Jun.
Implant-associated infections pose a significant clinical challenge in the orthopaedic field, often leading to implant failure and revision surgeries. These infections are hard to treat, particularly due to the formation of bacterial biofilms. Orthopaedic implant surfaces feature varying roughness and compositions to optimise implant osseointegration and performance. Highly polished surfaces are used in articulating areas of high shear force to minimise wear particle formation, while rough or porous surfaces enhance implant and bone fixation. However, increased surface roughness or porosity can also promote bacterial adhesion and biofilm formation, potentially elevating the risk of chronic infections. In this study, an automated single-pot solid-phase enhanced sample preparation protocol (SP3) workflow was developed to investigate the differences in proteomic response of immature and mature biofilms on titanium (Ti) surfaces with varying roughness (polished, corundum-blasted), and a plasma-sprayed microporous calcium phosphate coated surface (plasmapore), representing clinically relevant orthopaedic implants. Mature biofilms showed increased proteins related to toxin activity and the tricarboxylic acid (TCA) cycle, while immature biofilms had elevated proteins tied to binding, catalytic activities, and metabolism, suggesting surface topography influences early biofilm formation. This study highlights potential protein targets for novel antimicrobial therapies and suggests testing these as coatings on Ti surfaces, with the proteomics platform serving as a tool to evaluate bacterial and host responses.
植入物相关感染在骨科领域构成了重大的临床挑战,常常导致植入物失效和翻修手术。这些感染难以治疗,尤其是由于细菌生物膜的形成。骨科植入物表面具有不同的粗糙度和成分,以优化植入物与骨的整合及性能。在高剪切力的关节部位使用高度抛光的表面,以尽量减少磨损颗粒的形成,而粗糙或多孔的表面则可增强植入物与骨的固定。然而,表面粗糙度或孔隙率的增加也会促进细菌粘附和生物膜形成,从而可能增加慢性感染的风险。在本研究中,开发了一种自动化的单锅固相增强样品制备方案(SP3)工作流程,以研究在具有不同粗糙度(抛光、刚玉喷砂)的钛(Ti)表面以及代表临床相关骨科植入物的等离子喷涂微孔磷酸钙涂层表面(等离子孔)上,未成熟和成熟生物膜蛋白质组反应的差异。成熟生物膜显示与毒素活性和三羧酸(TCA)循环相关的蛋白质增加,而未成熟生物膜中与结合、催化活性和代谢相关的蛋白质含量升高,这表明表面形貌会影响生物膜的早期形成。本研究突出了新型抗菌疗法的潜在蛋白质靶点,并建议将这些靶点作为Ti表面的涂层进行测试,蛋白质组学平台可作为评估细菌和宿主反应的工具。