Department of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin- Madison, Madison, WI 53706, USA.
Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin- Madison, Madison, WI 53706, USA.
Acta Biomater. 2019 Jul 15;93:50-62. doi: 10.1016/j.actbio.2019.02.047. Epub 2019 Mar 1.
Staphylococcus aureus infections represent the major cause of titanium based-orthopaedic implant failure. Current treatments for S. aureus infections involve the systemic delivery of antibiotics and additional surgeries, increasing health-care costs and affecting patient's quality of life. As a step toward the development of new strategies that can prevent these infections, we build upon previous work demonstrating that the colonization of catheters by the fungal pathogen Candida albicans can be prevented by coating them with thin polymer multilayers composed of chitosan (CH) and hyaluronic acid (HA) designed to release a β-amino acid-based peptidomimetic of antimicrobial peptides (AMPs). We demonstrate here that this β-peptide is also potent against S. aureus (MBPC = 4 μg/mL) and characterize its selectivity toward S. aureus biofilms. We demonstrate further that β-peptide-containing CH/HA thin-films can be fabricated on the surfaces of rough planar titanium substrates in ways that allow mammalian cell attachment and permit the long-term release of β-peptide. β-Peptide loading on CH/HA thin-films was then adjusted to achieve release of β-peptide quantities that selectively prevent S. aureus biofilms on titanium substrates in vitro for up to 24 days and remained antimicrobial after being challenged sequentially five times with S. aureus inocula, while causing no significant MC3T3-E1 preosteoblast cytotoxicity compared to uncoated and film-coated controls lacking β-peptide. We conclude that these β-peptide-containing films offer a novel and promising localized delivery approach for preventing orthopaedic implant infections. The facile fabrication and loading of β-peptide-containing films reported here provides opportunities for coating other medical devices prone to biofilm-associated infections. STATEMENT OF SIGNIFICANCE: Titanium (Ti) and its alloys are used widely in orthopaedic devices due to their mechanical strength and long-term biocompatibility. However, these devices are susceptible to bacterial colonization and the subsequent formation of biofilms. Here we report a chitosan and hyaluronic acid polyelectrolyte multilayer-based approach for the localized delivery of helical, cationic, globally amphiphilic β-peptide mimetics of antimicrobial peptides to inhibit S. aureus colonization and biofilm formation. Our results reveal that controlled release of this β-peptide can selectively kill S. aureus cells without exhibiting toxicity toward MC3T3-E1 preosteoblast cells. Further development of this polymer-based coating could result in new strategies for preventing orthopaedic implant-related infections, improving outcomes of these titanium implants.
金黄色葡萄球菌感染是导致基于钛的骨科植入物失败的主要原因。目前治疗金黄色葡萄球菌感染的方法包括全身给予抗生素和额外的手术,这增加了医疗保健成本并影响了患者的生活质量。为了开发新的策略来预防这些感染,我们在先前证明真菌病原体白色念珠菌定植导管可以通过用壳聚糖(CH)和透明质酸(HA)组成的薄聚合物多层来防止的工作基础上进行构建设计用于释放基于β-氨基酸的抗菌肽(AMP)的肽模拟物。我们在这里证明,这种β-肽对金黄色葡萄球菌也有效(MBPC = 4 μg/mL),并表征了其对金黄色葡萄球菌生物膜的选择性。我们进一步证明,β-肽包含的 CH/HA 薄膜可以在粗糙平面钛基底表面以允许哺乳动物细胞附着并允许β-肽的长期释放的方式制造。然后调整 CH/HA 薄膜上的β-肽负载量,以实现在体外长达 24 天的时间内选择性地防止钛基底上金黄色葡萄球菌生物膜形成的β-肽释放量,并且在经过五次金黄色葡萄球菌接种物的连续挑战后仍然具有抗菌性,而与未涂层和不含β-肽的涂层对照相比,对 MC3T3-E1 前成骨细胞没有明显的细胞毒性。我们得出的结论是,这些含有β-肽的薄膜为预防骨科植入物感染提供了一种新颖且有前途的局部递送方法。这里报道的易于制造和加载含β-肽的薄膜为涂层其他易发生生物膜相关感染的医疗设备提供了机会。 意义声明:钛(Ti)及其合金由于其机械强度和长期生物相容性而被广泛用于骨科设备。然而,这些设备易受细菌定植和随后生物膜形成的影响。在这里,我们报告了一种壳聚糖和透明质酸聚电解质多层方法,用于局部递送电荷、阳离子、全局两亲性β-肽抗菌肽模拟物,以抑制金黄色葡萄球菌定植和生物膜形成。我们的结果表明,这种β-肽的控制释放可以选择性地杀死金黄色葡萄球菌细胞,而对 MC3T3-E1 前成骨细胞没有毒性。这种基于聚合物的涂层的进一步开发可能会导致预防骨科植入物相关感染的新策略,从而改善这些钛植入物的效果。