Suppr超能文献

人工智能对肌肉骨骼医学中多模态可穿戴设备发展的影响。

The Impact of AI on the Development of Multimodal Wearable Devices in Musculoskeletal Medicine.

作者信息

Olson Gage, Hansmann-Canas Isabel, Karimi Zahra, Yazdkhasti Amirhossein, Shabestanipour Ghazal, Ghaednia Hamid, Schwab Joseph H

机构信息

Center for Surgical Innovation and Engineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Department of Orthopaedics, Cedars-Sinai Health System, Los Angeles, CA, USA.

出版信息

HSS J. 2025 Jun 11:15563316251344945. doi: 10.1177/15563316251344945.

Abstract

As wearables are becoming an increasingly important part of wellness and everyday life for many people, their potential in healthcare is also expanding, particularly in personalized and remote healthcare. However, many wearables lack sophistication, relying on simple sensors such as accelerometers and pulse meters to measure heart rate, body composition, and daily activity. Such basic metrics are insufficient for musculoskeletal disease diagnosis, which requires more detailed, multimodal neuromusculoskeletal monitoring. A major challenge in wearables development is the need for precise electromechanical signal measurements, which are difficult to obtain with low-cost systems. Artificial intelligence (AI) holds promise in addressing these analytical challenges and enabling the creation of affordable, sophisticated wearables. While AI has been used for decades in engineering, its clinical application is still emerging, creating an opportunity for the development of AI-enhanced wearables capable of clinical diagnosis. AI can enhance data generated by various sensor types in wearable devices (such as accelerometers, electrical, optical, and acoustic sensors), enabling clinicians to monitor and diagnose complex conditions that require multiple sensing modalities. This review explores current wearable technologies, ongoing research in AI-enhanced wearables, the potential for AI to advance wearable technologies in healthcare, and the future directions in the development of multimodal wearables.

摘要

随着可穿戴设备对许多人而言正日益成为健康和日常生活的重要组成部分,其在医疗保健领域的潜力也在不断扩大,尤其是在个性化和远程医疗保健方面。然而,许多可穿戴设备并不精密,依靠加速度计和脉搏计等简单传感器来测量心率、身体成分和日常活动。这些基本指标不足以用于肌肉骨骼疾病的诊断,肌肉骨骼疾病诊断需要更详细的多模式神经肌肉骨骼监测。可穿戴设备开发中的一个主要挑战是需要精确的机电信号测量,而低成本系统很难做到这一点。人工智能(AI)有望应对这些分析挑战,并推动人们制造出价格合理且精密的可穿戴设备。虽然人工智能在工程领域已应用数十年,但其临床应用仍在兴起,这为开发具备临床诊断能力的人工智能增强型可穿戴设备创造了契机。人工智能可以增强可穿戴设备中各种传感器类型(如加速度计、电传感器、光学传感器和声传感器)生成的数据,使临床医生能够监测和诊断需要多种传感模式的复杂病症。本文综述探讨了当前的可穿戴技术、人工智能增强型可穿戴设备的正在进行的研究、人工智能推动医疗保健领域可穿戴技术发展的潜力以及多模式可穿戴设备开发的未来方向。

相似文献

6
Application of artificial intelligence in wearable devices: Opportunities and challenges.人工智能在可穿戴设备中的应用:机遇与挑战。
Comput Methods Programs Biomed. 2022 Jan;213:106541. doi: 10.1016/j.cmpb.2021.106541. Epub 2021 Nov 17.

本文引用的文献

5
Predictive Modeling for Spinal Metastatic Disease.脊柱转移性疾病的预测模型
Diagnostics (Basel). 2024 May 5;14(9):962. doi: 10.3390/diagnostics14090962.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验