Suppr超能文献

比较机器学习算法在电阻抗断层成像中的非侵入性检测和分类骨水泥失效中的应用。

Comparing machine learning algorithms for non-invasive detection and classification of failure in piezoresistive bone cement via electrical impedance tomography.

机构信息

Department of Orthopaedic Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, USA.

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Rev Sci Instrum. 2023 Dec 1;94(12). doi: 10.1063/5.0131671.

Abstract

At an estimated cost of $8 billion annually in the United States, revision surgeries to total joint replacements represent a substantial financial burden to the health care system and a tremendous mental and physical burden on patients and their caretakers. Fixation failures, such as implant loosening, wear, and mechanical instability of the poly(methyl methacrylate) (PMMA) cement, which bonds the implant to the bone, are the main causes of long-term implant failure. Early and accurate diagnosis of cement failure is critical for developing novel therapeutic strategies and reducing the high risk of a misjudged revision. Unfortunately, prevailing imaging modalities, notably plain radiographs, struggle to detect the precursors of implant failure and are often interpreted incorrectly. Our prior work has shown that the modification of PMMA bone cement with low concentrations of conductive fillers makes it piezoresistive and therefore self-sensing. When combined with a conductivity imaging modality such as electrical impedance tomography (EIT), it is possible to monitor load transfer across the PMMA using cost-effective, physiologically benign, non-contact, and real-time electrical measurements. Despite the ability of EIT for monitoring load transfer across self-sensing PMMA bone cement, it is unable to accurately characterize failure mechanisms. Overcoming this challenge is critical to the success of this technology in practice. Therefore, we herein expand upon our previous results by integrating machine learning techniques with EIT for cement condition characterization with the goal of establishing the feasibility of even off-the-shelf machine learning algorithms to address this important problem. We survey a wide variety of different machine learning algorithms for application to this problem, including neural networks on voltage readings of an EIT phantom for tracking the spatial position of a sample, specifying defect orientation within a sample, and classifying defect types, including cracks and delaminations. In addition, we explore the utilization of principal component analysis (PCA) for pre-treating impedance signals in each of these problems. Within the tested algorithms, our results show clear advantages of neural networks, support vector machines, and K-nearest neighbor algorithms for interpreting EIT signals. We also show that PCA is an effective addition to machine learning. These preliminary results demonstrate that the combination of smart materials, EIT, and machine learning may be a powerful instrumentation tool for diagnosing the origin and evolution of mechanical failure in joint replacements.

摘要

在美国,每年用于翻修全关节置换术的费用估计为 80 亿美元,这给医疗保健系统带来了巨大的经济负担,也给患者及其护理人员带来了巨大的精神和身体负担。固定失败,如植入物松动、磨损和将植入物固定在骨骼上的聚甲基丙烯酸甲酯 (PMMA) 水泥的机械不稳定性,是长期植入物失败的主要原因。早期和准确诊断水泥失效对于开发新的治疗策略和降低判断失误的高风险至关重要。不幸的是,目前的成像方式,特别是普通 X 光片,难以检测到植入物失效的前兆,而且经常被错误解读。我们之前的工作表明,用低浓度的导电填料对 PMMA 骨水泥进行改性,使其具有压阻性,从而实现自感。当与电导率成像方式(如电阻抗断层成像术)结合使用时,就可以使用经济高效、生理无害、非接触和实时的电测量来监测 PMMA 上的负载转移。尽管电阻抗断层成像术可以监测自感 PMMA 骨水泥上的负载转移,但它无法准确描述失效机制。克服这一挑战对于该技术在实践中的成功至关重要。因此,我们在此基础上扩展了之前的研究结果,将机器学习技术与电阻抗断层成像术结合起来,对水泥状况进行特征描述,目的是建立即使是现成的机器学习算法也能够解决这个重要问题的可行性。我们调查了各种不同的机器学习算法在这个问题上的应用,包括神经网络在电阻抗断层成像术的电压读数上的应用,用于跟踪样本的空间位置、指定样本内缺陷的方向以及对裂缝和分层等缺陷类型进行分类。此外,我们还探索了在这些问题中使用主成分分析 (PCA) 预处理阻抗信号的方法。在所测试的算法中,我们的结果清楚地表明,神经网络、支持向量机和 K-最近邻算法在解释电阻抗断层成像术信号方面具有明显的优势。我们还表明,主成分分析是机器学习的有效补充。这些初步结果表明,智能材料、电阻抗断层成像术和机器学习的结合可能是一种强大的仪器工具,可用于诊断关节置换中机械失效的起源和演变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验