Devore David I, Sun Dongming, Tadmori Iman, Le Kim-Phuong N, Lima Mariana R N, Kohn Joachim
Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA.
Graplon Technologies, LLC, Langhorne, Pennsylvania, USA.
J Biomed Mater Res A. 2025 Jun;113(6):e37941. doi: 10.1002/jbm.a.37941.
Plasma membrane fusion and resealing play essential roles in diverse biological processes, including embryogenesis, morphogenesis, tissue repair, and cancer metastasis. Certain polymeric surfactants, including poly(ethylene glycol) (PEG) and triblock poly(alkylene oxides) like Poloxamer 188 (P188), are known to modify cell membrane biophysical properties. This has enabled applications such as PEG fusion for severed nerves and P188-mediated muscle tissue repair. Similar to P188, tyrosine-derived triblock copolymers (TyPS) form self-assembled nanospheres that can reversibly insert into phospholipid monolayers and cell plasma membranes. The effects of phospholipid head group polarity on the insertion of TyPS into Langmuir phospholipid monolayers are examined here. The hydrophobic blocks of the polymeric surfactants are found to provide the primary driving force for insertion in the phospholipid membranes. The impact of the TyPS, PEG, and P188, alone and in combination, on membrane fusion in normal (L929 mouse fibroblast) and transformed (MDA-MB-231 human breast cancer) cells is then determined using in vitro cell culture methods. The cell culture studies demonstrate that PEG induces fusion in both cell lines and reveal that the combination of PEG and P188 has a strong positive synergistic effect on cell fusion. In contrast, the TyPS exhibits strong anti-fusion properties, inhibiting both spontaneous and PEG-enhanced fusion. P188 has a weak antifusion effect compared to TyPS. The fusogenic or antifusogenic behaviors of the polymeric surfactants correlate with their thermodynamic Hansen solubility parameters, and the synthetic tunability of the TyPS enables access to a far greater range of hydrophobicities than the available commercial Poloxamers. These findings suggest that mixtures of PEG and P188 may have the potential to enhance tissue repair and hybridoma output for monoclonal antibody production, while the TyPS may have the potential to inhibit metastatic cancers.
质膜融合和重新封闭在多种生物学过程中发挥着重要作用,包括胚胎发育、形态发生、组织修复和癌症转移。某些聚合物表面活性剂,包括聚乙二醇(PEG)和三嵌段聚环氧烷(如泊洛沙姆188(P188)),已知可改变细胞膜的生物物理性质。这使得诸如用于切断神经的PEG融合和P188介导的肌肉组织修复等应用成为可能。与P188类似,酪氨酸衍生的三嵌段共聚物(TyPS)形成自组装纳米球,可可逆地插入磷脂单层和细胞质膜中。本文研究了磷脂头部基团极性对TyPS插入朗缪尔磷脂单层的影响。发现聚合物表面活性剂的疏水嵌段为插入磷脂膜提供了主要驱动力。然后使用体外细胞培养方法确定TyPS、PEG和P188单独及组合对正常(L929小鼠成纤维细胞)和转化(MDA-MB-231人乳腺癌)细胞中膜融合的影响。细胞培养研究表明,PEG在两种细胞系中均诱导融合,并揭示PEG和P188的组合对细胞融合具有强烈正协同效应。相比之下,TyPS表现出强烈的抗融合特性,抑制自发融合和PEG增强的融合。与TyPS相比,P188具有较弱的抗融合作用。聚合物表面活性剂的促融合或抗融合行为与其热力学汉森溶解度参数相关,并且TyPS的合成可调性使得能够获得比市售泊洛沙姆更大范围的疏水性。这些发现表明,PEG和P188的混合物可能有潜力增强组织修复和用于单克隆抗体制备的杂交瘤产量,而TyPS可能有潜力抑制转移性癌症。