Yang Xuesong, Zhang Mingqi, Tang Baolei, Wang Lijie, Yang Bing, Li Liang, Naumov Panče, Zhang Hongyu
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
J Am Chem Soc. 2025 Jul 2;147(26):22961-22971. doi: 10.1021/jacs.5c05733. Epub 2025 Jun 16.
Concomitant long-lived phosphorescence and cryogenic elasticity in soft matter is an immensely challenging endeavor due to the contrasting effect of low temperatures on these properties. While the low temperature normally extends and enhances phosphorescence, it typically compromises mechanical elasticity by freezing the molecular motion, inevitably leading to brittleness and cracking of soft materials. In this work, we posit that the emerging class of organic crystals can overcome this intrinsic disparity and describe an organic crystalline material that meets both requirements─an exceptional elasticity of its crystals at 77 K and ultralong afterglow of up to about 30 s, the longest lifetime of a flexible organic crystal reported to date. The material, triphenylene, was prepared as elastic crystals, where the molecular rigidity and dense packing enable reversible lattice deformation and mechanical robustness on cooling, while they also result in prolonged phosphorescence at low temperatures. Crystals of this material act as dynamic phosphorescent waveguides, with their emission persisting in low temperatures and dark, demonstrating both sustained signal transmission capabilities and a unique opportunity for spatiotemporal control of the optical output. At a conceptual level, the results introduce organic crystals for time-encoded biological information transmission, providing a novel material platform for flexible, lightweight optical devices and sensors that can function in extreme environments.
由于低温对这些特性的相反影响,在软物质中实现伴随的长寿命磷光和低温弹性是一项极具挑战性的工作。虽然低温通常会延长和增强磷光,但它通常会通过冻结分子运动来损害机械弹性,不可避免地导致软材料变脆和开裂。在这项工作中,我们认为新兴的有机晶体类别可以克服这种内在差异,并描述了一种满足这两个要求的有机晶体材料——其晶体在77 K时具有出色的弹性,以及长达约30秒的超长余辉,这是迄今为止报道的柔性有机晶体最长的寿命。该材料,即三亚苯,被制备成弹性晶体,其中分子刚性和紧密堆积使得在冷却时晶格能够可逆变形并具有机械稳健性,同时它们还会在低温下导致磷光延长。这种材料的晶体充当动态磷光波导,其发射在低温和黑暗环境中持续存在,既展示了持续的信号传输能力,也为光输出的时空控制提供了独特的机会。在概念层面上,这些结果引入了用于时间编码生物信息传输的有机晶体,为可在极端环境中运行的柔性、轻质光学器件和传感器提供了一个新型材料平台。