Yamamoto Nao, Citron Daniel T, Mwalili Samuel M, Gathungu Duncan K, Cuadros Diego F, Bershteyn Anna
Department of Population Health, New York University Grossman School of Medicine, New York, New York, United States of America.
Strathmore University, Ole Sangale Road, Nairobi, Kenya.
PLoS Comput Biol. 2025 Jun 16;21(6):e1013178. doi: 10.1371/journal.pcbi.1013178. eCollection 2025 Jun.
HIV hotspots, regions with higher prevalence than surrounding areas, are observed across Africa, yet their formation and persistence mechanisms remain poorly understood. We hypothesized that random fluctuations during the early stages of the HIV epidemic (1978-1982), amplified by positive feedback between HIV incidence and prevalence, play a critical role in hotspot formation and persistence. To explore this, we applied a network-based HIV transmission model, focusing on randomness in the spatial structure of the epidemic.
We adapted a previously validated agent-based network HIV transmission model, EMOD-HIV, to simulate HIV spread in western Kenya communities. The model includes demographics, age-structured social networks, and HIV transmission, prevention, and treatment. We simulated 250 identical communities, introducing stochastic fluctuations in network structure and case importation. Outliers were defined as communities with prevalence > 1.5x the median, and persistence as meeting these criteria for >70% of 1980-2050. We systematically varied community size (1,000-10,000), importation timing (1978-1982), and importation patterns (spread over 1, 3, or 5 years), and calculated the proportion of outliers and persistent outliers.
HIV prevalence outliers were more common in smaller communities: in 1990, 25.3% (uncertainty interval: 22.3%-28.2%) of 1,000-person communities vs. 9.1% (uncertainty interval: 6.9%-11.4%) of 10,000-person communities. By 2050, 21.6% of 1,000-person communities were persistent outliers, compared to none in larger communities. Autocorrelation of HIV prevalence was high (Pearson's correlation coefficient 0.801 [95% CI: 0.796-0.806] for 1,000-person communities), reflecting feedback that amplified early fluctuations.
Early random fluctuations contribute to the emergence and persistence of prevalence outliers, especially in smaller communities. Recognizing the role of randomness in prevalence outlier formation in these settings is crucial for refining HIV control strategies, as traditional methods may overlook these areas. Adaptive surveillance systems can enhance detection and intervention efforts for HIV and future pandemics.
在非洲各地都观察到了艾滋病毒热点地区,即患病率高于周边地区的区域,但其形成和持续存在的机制仍知之甚少。我们假设,在艾滋病毒流行早期(1978 - 1982年)的随机波动,在艾滋病毒发病率和患病率之间的正反馈作用下被放大,在热点地区的形成和持续存在中起着关键作用。为了探究这一点,我们应用了一个基于网络的艾滋病毒传播模型,重点关注疫情空间结构中的随机性。
我们改编了一个先前经过验证的基于主体的网络艾滋病毒传播模型EMOD - HIV,以模拟艾滋病毒在肯尼亚西部社区的传播。该模型包括人口统计学、年龄结构社会网络以及艾滋病毒的传播、预防和治疗。我们模拟了250个相同的社区,在网络结构和病例输入方面引入随机波动。异常值被定义为患病率高于中位数1.5倍的社区,持续性是指在1980 - 2050年的70%以上时间内符合这些标准。我们系统地改变社区规模(1000 - 10000人)、输入时间(1978 - 1982年)和输入模式(在1年、3年或5年内传播),并计算异常值和持续性异常值的比例。
艾滋病毒患病率异常值在较小的社区更为常见:1990年,1000人社区中有25.3%(不确定区间:22.3% - 28.2%),而10000人社区中有9.1%(不确定区间:6.9% - 11.4%)。到2050年,1000人社区中有21.6%是持续性异常值,而较大社区中没有。艾滋病毒患病率的自相关性很高(1000人社区的皮尔逊相关系数为0.801 [95%置信区间:0.796 - 0.806]),反映了放大早期波动的反馈。
早期随机波动有助于患病率异常值的出现和持续存在,尤其是在较小的社区。认识到随机性在这些环境中患病率异常值形成中的作用对于完善艾滋病毒控制策略至关重要,因为传统方法可能会忽略这些地区。适应性监测系统可以加强对艾滋病毒和未来大流行病的检测和干预工作。