Liu Rongjuan, Dai Xiaobin, Li Benyou, Li Qiang, Wei Jingjing, Yan Li-Tang, Yang Zhijie
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
State Key Laboratory of Chemical Engineering and Low-Carbon Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
J Am Chem Soc. 2025 Jul 2;147(26):22901-22910. doi: 10.1021/jacs.5c05428. Epub 2025 Jun 16.
Chirality─the property of being nonsuperimposable on its mirror image─plays a fundamental role in shaping how materials interact with light, molecules, and external fields. This property is key to advancements in areas such as quantum computing, flexible electronics, and smart sensors. However, controlling chirality in materials beyond the molecular scale has remained a significant challenge. In this study, we demonstrate a new approach for controlling the chirality of self-assembled materials by manipulating their behavior within deformable emulsion droplets. These droplets, ranging from nanometers to micrometers in size, guide the twisting of chiral fibrils formed through molecular self-assembly, with the droplet size determining the chirality. Our results, based on over 20 different chiral molecules, show that droplet confinement can induce chirality inversion, where nanoscale and microscale droplets exhibit opposite handedness. When the size of the droplet matches the persistence length of the chiral fibrils, the particles form superhelical structures. If mismatched, the fibrils twist in the opposite direction. In addition, we show that surfactant-coated helical fibrils can elongate into micrometer-long structures via living self-assembly, with chirality dictated by the as-formed helical fibrils and not the additional monomers. This work paves the way for new strategies to design and control chiral materials with tailored properties for a range of cutting-edge applications.
手性——即无法与自身镜像叠合的特性——在塑造材料与光、分子及外部场的相互作用方式方面发挥着根本性作用。这一特性是量子计算、柔性电子学和智能传感器等领域取得进展的关键。然而,在分子尺度以上控制材料的手性仍然是一项重大挑战。在本研究中,我们展示了一种通过操纵自组装材料在可变形乳液液滴中的行为来控制其手性的新方法。这些尺寸从纳米到微米不等的液滴引导通过分子自组装形成的手性原纤维发生扭曲,液滴大小决定手性。我们基于20多种不同手性分子的研究结果表明,液滴限制可诱导手性反转,其中纳米级和微米级液滴呈现相反的手性。当液滴大小与手性原纤维的持久长度相匹配时,粒子形成超螺旋结构。如果不匹配,原纤维则会向相反方向扭曲。此外,我们表明,表面活性剂包覆的螺旋原纤维可通过活性自组装伸长为微米长的结构,其手性由形成的螺旋原纤维而非额外的单体决定。这项工作为设计和控制具有定制特性的手性材料以用于一系列前沿应用的新策略铺平了道路。