Zhu Chenghao, Liu Lydia Y, Ha Annie, Yamaguchi Takafumi N, Zhu Helen, Hugh-White Rupert, Livingstone Julie, Patel Yash, Kislinger Thomas, Boutros Paul C
Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
Nat Biotechnol. 2025 Jun 16. doi: 10.1038/s41587-025-02701-0.
Proteogenomics is limited by the challenge of modeling the complexities of gene expression. We create moPepGen, a graph-based algorithm that comprehensively generates non-canonical peptides in linear time. moPepGen works with multiple technologies, in multiple species and on all types of genetic and transcriptomic data. In human cancer proteomes, it enumerates previously unobservable noncanonical peptides arising from germline and somatic genomic variants, noncoding open reading frames, RNA fusions and RNA circularization.
蛋白质基因组学受到基因表达复杂性建模挑战的限制。我们创建了moPepGen,这是一种基于图的算法,能够在线性时间内全面生成非经典肽段。moPepGen可与多种技术配合使用,适用于多种物种以及所有类型的遗传和转录组数据。在人类癌症蛋白质组中,它能够列举出由种系和体细胞基因组变异、非编码开放阅读框、RNA融合和RNA环化产生的以前无法观察到的非经典肽段。