Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142.
Yunnan Key Laboratory of Potato Biology, Chinese Academy of Agricultural Sciences (CAAS)-Yunnan Normal University (YNNU)-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming 650500, China.
Proc Natl Acad Sci U S A. 2024 Jan 30;121(5):e2314798121. doi: 10.1073/pnas.2314798121. Epub 2024 Jan 23.
Constructing efficient cell factories for product synthesis is frequently hampered by competing pathways and/or insufficient precursor supply. This is particularly evident in the case of triterpenoid biosynthesis in , where squalene biosynthesis is tightly coupled to cytosolic biosynthesis of sterols essential for cell viability. Here, we addressed this problem by reconstructing the complete squalene biosynthetic pathway, starting from acetyl-CoA, in the peroxisome, thus harnessing peroxisomal acetyl-CoA pool and sequestering squalene synthesis in this organelle from competing cytosolic reactions. This strategy led to increasing the squalene levels by 1,300-fold relatively to native cytosolic synthesis. Subsequent enhancement of the peroxisomal acetyl-CoA supply by two independent approaches, 1) converting cellular lipid pool to peroxisomal acetyl-CoA and 2) establishing an orthogonal acetyl-CoA shortcut from CO-derived acetate in the peroxisome, further significantly improved local squalene accumulation. Using these approaches, we constructed squalene-producing strains capable of yielding 32.8 g/L from glucose, and 31.6 g/L from acetate by employing a cofeeding strategy, in bioreactor fermentations. Our findings provide a feasible strategy for protecting intermediate metabolites that can be claimed by multiple reactions by engineering peroxisomes in as microfactories for the production of such intermediates and in particular acetyl-CoA-derived metabolites.
构建用于产品合成的高效细胞工厂常常受到竞争途径和/或前体供应不足的阻碍。在三萜类生物合成中尤其如此,其中鲨烯生物合成与细胞质生物合成必需的固醇紧密偶联,这些固醇对于细胞活力是必需的。在这里,我们通过在过氧化物酶体中从头构建完整的鲨烯生物合成途径,从乙酰辅酶 A 开始,从而利用过氧化物酶体中的乙酰辅酶 A 池,并将鲨烯合成隔离在这个细胞器中,使其免受细胞质中竞争反应的影响,解决了这个问题。这一策略使鲨烯水平相对于天然细胞质合成提高了 1300 倍。通过两种独立的方法进一步增强过氧化物酶体中的乙酰辅酶 A 供应,1)将细胞脂质池转化为过氧化物酶体中的乙酰辅酶 A,2)在过氧化物酶体中建立来自 CO 衍生的乙酸的正交乙酰辅酶 A 捷径,进一步显著提高了局部鲨烯的积累。使用这些方法,我们构建了能够通过共进料策略在生物反应器发酵中从葡萄糖产生 32.8 g/L 鲨烯和从乙酸产生 31.6 g/L 鲨烯的鲨烯生产菌株。我们的发现为保护中间代谢物提供了一种可行的策略,通过工程化过氧化物酶体将其作为此类中间代谢物(特别是乙酰辅酶 A 衍生代谢物)的微工厂,可用于生产这些中间代谢物。