Suppr超能文献

重症监护病房谵妄预测(PRE-DELIRIC)模型在综合重症监护病房及肝病患者中对重症监护病房谵妄的验证:一项回顾性队列研究

Validation of PREdiction of DELIRium in ICu patients (PRE-DELIRIC) model for ICU delirium in general ICU and patients with liver disease: a retrospective cohort study.

作者信息

Papadopoulou Areti, Cowan Sarah L, Preller Jacobus, Goudie Robert J B

机构信息

MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SR, UK.

Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.

出版信息

J Intensive Care. 2025 Jun 16;13(1):33. doi: 10.1186/s40560-025-00800-3.

Abstract

BACKGROUND

Delirium, a neuropsychiatric disorder characterized by disturbances in attention, cognition, and awareness, is a common complication among intensive care unit (ICU) patients. Several predictive models have been developed that aim to identify patients at high risk of delirium. PRE-DELIRIC (PREdiction of DELIRium in ICu) and its recalibrated version, have been externally validated in several studies, but modest sample sizes have meant uncertainty remains, particularly in patient subgroups. Of particular relevance to our population (as a tertiary liver disease centre), performance in patients with liver disease has not been specifically assessed.

METHODS

This retrospective cohort study evaluated the PRE-DELIRIC model using data from 3312 adult ICU patients at Cambridge University Hospital, between February 2017 and September 2021. Delirium was primarily defined as either a positive Confusion Assessment Method for the ICU (CAM-ICU) or any new administration of antipsychotic medication. Predictive performance was assessed according to discrimination, measured by the area under the receiver operating characteristic (AUROC) and precision-recall curves; and calibration, as quantified by calibration slope and intercept. We also conducted subgroup analyses in patients with liver disease, sedated patients, and across varying opioid dosing.

RESULTS

Delirium occurred in 32.9% of patients. Overall, PRE-DELIRIC demonstrated moderate-to-good discriminative performance (AUROC 0.74; 95% CI 0.72-0.76); but the model significantly underpredicted delirium incidence for those patients predicted to have moderate-to-high delirium risk (PRE-DELIRIC score 0.2-0.6); and overpredicted for those predicted to be at very high risk (PRE-DELIRIC score > 0.6). Among patients with liver disease (41.6% delirium incidence), discrimination was similar to the overall cohort (AUROC 0.73; 95% CI 0.66-0.81), but calibration was poor, with significant under-prediction of delirium. Discrimination was significantly poorer in both sedated patients and patients receiving high opioid dosing.

CONCLUSION

This is the largest validation study of the PRE-DELIRIC model to date, and the first to specifically consider patients with liver disease. We found moderate-to-good discriminative predictive performance both overall and in liver disease patients, but calibration was only moderate overall, and significantly under-predicted risk in patients with liver disease. Recalibration of the model and further subgroup-specific adjustments may enhance its utility in clinical practice.

摘要

背景

谵妄是一种以注意力、认知和意识障碍为特征的神经精神疾病,是重症监护病房(ICU)患者常见的并发症。已经开发了几种预测模型,旨在识别谵妄高危患者。PRE-DELIRIC(ICU中谵妄的预测)及其重新校准版本已在多项研究中进行了外部验证,但样本量较小意味着不确定性仍然存在,尤其是在患者亚组中。与我们的人群(作为三级肝病中心)特别相关的是,尚未专门评估肝病患者的模型表现。

方法

这项回顾性队列研究使用了2017年2月至2021年9月期间剑桥大学医院3312名成年ICU患者的数据,对PRE-DELIRIC模型进行了评估。谵妄主要定义为ICU的阳性意识模糊评估方法(CAM-ICU)或任何新使用的抗精神病药物。根据辨别力评估预测性能,通过受试者操作特征曲线(AUROC)和精确召回曲线下的面积来衡量;以及校准,通过校准斜率和截距进行量化。我们还对肝病患者、镇静患者以及不同阿片类药物剂量的患者进行了亚组分析。

结果

32.9%的患者发生了谵妄。总体而言,PRE-DELIRIC表现出中等至良好的辨别性能(AUROC 0.74;95%CI 0.72-0.76);但该模型对那些预测有中度至高谵妄风险的患者(PRE-DELIRIC评分0.2-0.6)谵妄发生率的预测明显偏低;而对那些预测为极高风险的患者(PRE-DELIRIC评分>0.6)则预测偏高。在肝病患者中(谵妄发生率为41.6%),辨别力与总体队列相似(AUROC 0.73;95%CI 0.66-0.81),但校准较差,对谵妄的预测明显不足。镇静患者和接受高剂量阿片类药物治疗的患者的辨别力明显较差。

结论

这是迄今为止对PRE-DELIRIC模型最大规模的验证研究,也是首次专门考虑肝病患者的研究。我们发现总体和肝病患者中都有中等至良好的辨别预测性能,但总体校准仅为中等,且对肝病患者的风险预测明显不足。对模型进行重新校准和进一步针对亚组的调整可能会提高其在临床实践中的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/426e/12168250/eccc57f93d0e/40560_2025_800_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验