Suppr超能文献

一种用于通过氟代脱氧葡萄糖正电子发射断层扫描(FDG-PET)预测淀粉样蛋白-β阳性的稳健残差三维卷积神经网络模型。

A Robust Residual Three-dimensional Convolutional Neural Networks Model for Prediction of Amyloid-β Positivity by Using FDG-PET.

作者信息

Ardakani Ilya, Yamada Takahiro, Iwano Sayaka, Kumar Maurya Sunil, Ishii Kazunari

机构信息

Department of Research and Development, Splink, Inc., Akasaka, Minato, Tokyo, Japan.

Department of Radiology, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama, Osaka, Japan.

出版信息

Clin Nucl Med. 2025 Aug 1;50(8):707-713. doi: 10.1097/RLU.0000000000005966. Epub 2025 Jun 17.

Abstract

BACKGROUND

Widely used in oncology PET, 2-deoxy-2- 18 F-FDG PET is more accessible and affordable than amyloid PET, which is a crucial tool to determine amyloid positivity in diagnosis of Alzheimer disease (AD). This study aimed to leverage deep learning with residual 3D convolutional neural networks (3DCNN) to develop a robust model that predicts amyloid-β positivity by using FDG-PET.

PATIENTS AND METHODS

In this study, a cohort of 187 patients was used for model development. It consisted of patients ranging from cognitively normal to those with dementia and other cognitive impairments who underwent T1-weighted MRI, 18 F-FDG, and 11 C-Pittsburgh compound B (PiB) PET scans. A residual 3DCNN model was configured using nonexhaustive grid search and trained on repeated random splits of our development data set. We evaluated the performance of our model, and particularly its robustness, using a multisite data set of 99 patients of different ethnicities with images at different site harmonization levels.

RESULTS

Our model achieved mean AUC scores of 0.815 and 0.840 on images without and with site harmonization correspondingly. Respectively, it achieved higher AUC scores of 0.801 and 0.834 in the cognitively normal (CN) group compared with 0.777 and 0.745 in the dementia group. As for F1 score, the corresponding mean scores were 0.770 and 0.810 on images without and with site harmonization. In the CN group, it achieved lower F1 scores of 0.580 and 0.658 compared with 0.907 and 0.931 in the dementia group.

CONCLUSIONS

We demonstrated that residual 3DCNN can learn complex 3D spatial patterns in FDG-PET images and robustly predict amyloid-β positivity with significantly less reliance on site harmonization preprocessing.

摘要

背景

2-脱氧-2-[¹⁸F]氟代脱氧葡萄糖(2-deoxy-2-¹⁸F-FDG)PET在肿瘤学PET中广泛应用,比淀粉样蛋白PET更容易获得且成本更低,而淀粉样蛋白PET是诊断阿尔茨海默病(AD)时确定淀粉样蛋白阳性的关键工具。本研究旨在利用带有残差3D卷积神经网络(3DCNN)的深度学习来开发一个强大的模型,该模型通过使用FDG-PET预测淀粉样β蛋白阳性。

患者与方法

在本研究中,一组187名患者用于模型开发。该组患者包括认知正常者、患有痴呆症和其他认知障碍者,他们均接受了T1加权MRI、¹⁸F-FDG和¹¹C-匹兹堡化合物B(PiB)PET扫描。使用非穷举网格搜索配置残差3DCNN模型,并在我们开发数据集的重复随机分割上进行训练。我们使用一个包含99名不同种族患者的多站点数据集,这些患者的图像具有不同的站点协调水平,来评估我们模型的性能,尤其是其稳健性。

结果

我们的模型在未进行站点协调和进行站点协调的图像上分别取得了平均AUC分数0.815和0.840。在认知正常(CN)组中,其AUC分数分别为0.801和0.834,而在痴呆组中分别为0.777和0.745。至于F1分数,在未进行站点协调和进行站点协调的图像上相应的平均分数分别为0.770和0.810。在CN组中,其F1分数分别为0.580和0.658,而在痴呆组中分别为0.907和0.931。

结论

我们证明了残差3DCNN可以在FDG-PET图像中学习复杂的3D空间模式,并且在对站点协调预处理的依赖显著减少的情况下,稳健地预测淀粉样β蛋白阳性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b035/12208393/9c2e31d71cec/rlu-50-707-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验