Suppr超能文献

一种基于氟代脱氧葡萄糖正电子发射断层扫描(FDG-PET)的机器学习框架,以支持阿尔茨海默病及相关疾病的神经学决策制定。

An FDG-PET-Based Machine Learning Framework to Support Neurologic Decision-Making in Alzheimer Disease and Related Disorders.

作者信息

Barnard Leland, Botha Hugo, Corriveau-Lecavalier Nick, Graff-Radford Jonathan, Dicks Ellen, Gogineni Venkatsampath, Zhang Gemeng, Burkett Brian J, Johnson Derek R, Huls Sean J, Khurana Aditya, Stricker John L, Paul Min Hoon-Ki, Senjem Matthew L, Fan Winnie Z, Wiste Heather, Machulda Mary M, Murray Melissa E, Dickson Dennis W, Nguyen Aivi T, Reichard R Ross, Gunter Jeffrey L, Schwarz Christopher G, Kantarci Kejal, Whitwell Jennifer L, Josephs Keith Anthony, Knopman David S, Boeve Bradley F, Petersen Ronald C, Jack Clifford R, Lowe Val J, Jones David T

机构信息

Neurology, Mayo Clinic, Rochester, MN.

Psychiatry and Psychology, Mayo Clinic, Rochester, MN.

出版信息

Neurology. 2025 Jul 22;105(2):e213831. doi: 10.1212/WNL.0000000000213831. Epub 2025 Jun 27.

Abstract

BACKGROUND AND OBJECTIVES

Distinguishing neurodegenerative diseases is a challenging task requiring neurologic expertise. Clinical decision support systems (CDSSs) powered by machine learning (ML) and artificial intelligence can assist with complex diagnostic tasks by augmenting user capabilities, but workflow integration poses many challenges. We propose that a modeling framework based on fluorodeoxyglucose PET (FDG-PET) imaging can address these challenges and form the basis of an effective CDSS for neurodegenerative disease.

METHODS

This retrospective study focused on FDG-PET images in a discovery cohort drawn from 3 research studies plus routine clinical patients. When selecting research study participants, the inclusion criterion was the availability of an FDG-PET image from within 2.5 years of diagnosis with 1 of 9 specific neurodegenerative syndromes or designation as unimpaired. Participants from disease groups were recruited from the clinical patient population while unimpaired participants came primarily from a population study. The discovery cohort was used to develop a clinical decision support framework we call StateViewer, which applies a neighbor matching algorithm to detect the presence of 9 different neurodegenerative phenotypes. The ML performance of this framework was evaluated in the discovery cohort by nested cross-validation and externally validated in the Alzheimer's Disease Neuroimaging Initiative. Potential for clinical integration was demonstrated in a radiologic reader study focused on differentiating posterior cortical atrophy from Lewy body dementia.

RESULTS

The discovery cohort contained 3,671 individuals with a mean age of 68 years and consisted of 49% reported female. Our model framework was able to detect the presence of 9 different neurodegenerative phenotypes with a sensitivity of 0.89 ± 0.03 and an area under the receiver operating characteristic curve of 0.93 ± 0.02. In the radiologic reader study, readers using our model were found to have 3.3 ± 1.1 times greater odds of making a correct diagnosis than readers using a current standard-of-care workflow.

DISCUSSION

Our proposed framework provides strong classification performance with high interpretability, and it addresses many of the challenges that face clinical integration of ML-based decision support tools. One limitation of this study is a uniform discovery cohort that is not representative of other patient populations in some regards.

摘要

背景与目的

鉴别神经退行性疾病是一项具有挑战性的任务,需要神经学专业知识。由机器学习(ML)和人工智能驱动的临床决策支持系统(CDSS)可以通过增强用户能力来协助完成复杂的诊断任务,但工作流程整合带来了许多挑战。我们提出,基于氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)成像的建模框架可以应对这些挑战,并构成有效的神经退行性疾病CDSS的基础。

方法

这项回顾性研究聚焦于来自3项研究以及常规临床患者的发现队列中的FDG-PET图像。选择研究参与者时,纳入标准是在诊断为9种特定神经退行性综合征之一后的2.5年内或被认定为未受损者中可获得FDG-PET图像。疾病组的参与者从临床患者群体中招募,而未受损的参与者主要来自一项人群研究。发现队列用于开发一个我们称为StateViewer的临床决策支持框架,该框架应用邻域匹配算法来检测9种不同神经退行性表型的存在。通过嵌套交叉验证在发现队列中评估该框架的ML性能,并在阿尔茨海默病神经影像学计划中进行外部验证。在一项专注于区分后皮质萎缩与路易体痴呆的放射科医生研究中展示了临床整合的潜力。

结果

发现队列包含3671名个体,平均年龄68岁,其中49%为女性。我们的模型框架能够检测出9种不同神经退行性表型的存在,灵敏度为0.89±0.03,受试者工作特征曲线下面积为0.93±0.02。在放射科医生研究中,发现使用我们模型的医生做出正确诊断的几率比使用当前标准护理工作流程的医生高3.3±1.1倍。

讨论

我们提出的框架提供了强大的分类性能和高可解释性,并且解决了基于ML的决策支持工具临床整合面临的许多挑战。本研究的一个局限性是统一的发现队列在某些方面不能代表其他患者群体。

相似文献

本文引用的文献

5
2023 Alzheimer's disease facts and figures.2023 年阿尔茨海默病事实和数据。
Alzheimers Dement. 2023 Apr;19(4):1598-1695. doi: 10.1002/alz.13016. Epub 2023 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验