Suppr超能文献

通过二次离子质谱法利用氩气团簇离子束(Ar)和氩共溅射法测定金属有机框架薄膜内各组分的分布。

Determining the Distributions of Components inside Metal-Organic Framework Thin Films with an Ar-Gas Cluster Ion Beam (Ar) and Ar Cosputter via Secondary Ion Mass Spectrometry.

作者信息

Chiang Peng-Hsuan, Hsieh Pochun, Hou Cheng-Hung, You Yun-Wen, Wang Man-Ying, Yang Ting-Jia, Shyue Jing-Jong

机构信息

Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.

Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.

出版信息

ACS Appl Mater Interfaces. 2025 Jul 2;17(26):38658-38668. doi: 10.1021/acsami.5c05778. Epub 2025 Jun 17.

Abstract

Metal-organic frameworks (MOFs) are widely used as functional porous materials because of their high specific surface area, adjustable pore size, and functional groups in their structure. Understanding the spatial distribution of guest molecules inside MOFs may help further advance the development of MOFs and provide more insights into their application in various fields. However, analytical techniques that can directly obtain the distribution of organic guests inside MOF materials are scarce. In this work, the UiO-66 MOF was used as a model MOF to validate the experimental parameters for constructing an authentic depth profile with a time-of-flight secondary ion mass spectrometer (ToF-SIMS). In the analysis phase, pulsed C was used as the primary ion beam to generate molecular secondary ions. In the sputter phase, sets of Ar gas cluster ion beams (Ar-GCIB, Ar) with different energy densities (energy per atom, E/n = 2-20 eV/atom) and atomic Ar with different kinetic energies and current densities were used to cosputter the samples. The results show that when only Ar-GCIB is used, the sputtered ions cause less damage to the sample and preserve the chemical structure of the organic components as the E/n decreases. However, preferential sputtering occurs because the removal rate of inorganic nodes is much lower than that of the organic linkers of MOFs. Eventually, the inorganic components remaining on the surface prevent subsequent analysis. When cosputtered with Ar, the auxiliary atomic ions increase the sputter rate of the inorganic node, eliminate damage to the chemical structure, and alleviate the preferential sputtering between organic and inorganic components. Higher voltages and higher current densities (500 V, 5 × 10 A/cm) of Ar yielded the most realistic results. In summary, to obtain a realistic component distribution inside the MOF, the use of Ar-GCIB─Ar cosputtering is necessary. Based on low energy density (E/n = 4 eV/atom) of Ar-GCIB and optimized Ar cosputter, the distributions of inorganic nodes, organic linkers, and guest molecules inside the MOF films were reliably and thoroughly identified. This work presents a generalizable direct method for determining the distribution of molecules within MOF composites.

摘要

金属有机框架材料(MOFs)因其高比表面积、可调节的孔径以及结构中的官能团而被广泛用作功能性多孔材料。了解客体分子在MOFs内部的空间分布可能有助于进一步推动MOFs的发展,并为其在各个领域的应用提供更多见解。然而,能够直接获取MOF材料内部有机客体分布的分析技术却很稀缺。在这项工作中,UiO - 66 MOF被用作模型MOF,以验证用飞行时间二次离子质谱仪(ToF - SIMS)构建真实深度剖面的实验参数。在分析阶段,使用脉冲C作为一次离子束来产生分子二次离子。在溅射阶段,使用具有不同能量密度(每个原子的能量,E/n = 2 - 20 eV/原子)的氩气团簇离子束(Ar - GCIB,Ar)组以及具有不同动能和电流密度的原子Ar来共溅射样品。结果表明,当仅使用Ar - GCIB时,随着E/n降低,溅射离子对样品造成的损伤较小,并保留了有机成分的化学结构。然而,由于无机节点的去除速率远低于MOFs有机连接体的去除速率,会发生优先溅射。最终,残留在表面的无机成分阻碍了后续分析。当与Ar共溅射时,辅助原子离子提高了无机节点的溅射速率,消除了对化学结构的损伤,并减轻了有机和无机成分之间的优先溅射。Ar的较高电压和较高电流密度(500 V,5×10 A/cm)产生了最真实的结果。总之,为了获得MOF内部真实的成分分布,必须使用Ar - GCIB - Ar共溅射。基于Ar - GCIB的低能量密度(E/n = 4 eV/原子)和优化的Ar共溅射,可靠且全面地确定了MOF薄膜内部无机节点、有机连接体和客体分子的分布。这项工作提出了一种用于确定MOF复合材料中分子分布的可推广的直接方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dab/12232284/d843454345ee/am5c05778_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验