Wang Yang, Li Jing, Zhang Yuhan, Li Yao, Chen Xinru, Cui Jiaqi, Xue Feng, Ren Jianluan, Dai Jianjun, Tang Fang
Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine,Nanjing Agricultural University, , Nanjing, China.
School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
Microbiol Spectr. 2025 Aug 5;13(8):e0006725. doi: 10.1128/spectrum.00067-25. Epub 2025 Jun 17.
() O157:H7 is a major foodborne pathogen and a critical global food safety concern. Bacteriophage (phage) therapy offers a promising, highly specific biological alternative to antibiotic treatment. However, the clinical application of phage therapy is frequently limited by the rapid emergence of bacterial resistance. In this study, we examined the interaction between O157:H7 strain EDL933 and two T4-like phages, assessing the adaptive costs incurred by host strains in developing phage resistance. Our results indicate that phage PSD2001 utilizes capsular polysaccharide and lipopolysaccharides as adsorption receptors, while phage PNJ212 targets outer membrane protein C (OmpC) as its adsorption receptor. Notably, both phage employ gp37-like protein as receptor-binding proteins, highlighting the diversity of receptors on EDL933 and the complexity of phage-host recognition mechanisms. Furthermore, this study identified the adaptive costs of phage resistance, including antibiotic susceptibility, biofilm formation ability, survival, and colonization abilities, in the environment. These findings deepen our understanding of phage-host interactions and offer valuable insights for the application of phage therapy.IMPORTANCEPhage therapy offers an innovative strategy to combat antibiotic-resistant bacterial infections. To address the challenge of phage-resistant strains, we can adopt two strategies: using phage cocktails targeting multiple bacterial receptors to delay resistance development; and implementing a 'phage shift' treatment strategy that exploits the adaptive trade-offs of phage-resistant bacteria. Our research provides insights into the phage receptor recognition mechanisms in O157:H7, a major foodborne pathogen. We identified key target receptors, including bacterial capsular polysaccharide, lipopolysaccharides, and OmpC, and found that the receptor-binding strategies of these phages resemble those of the T4 phage tail fiber protein gp37. Additionally, we revealed the adaptive costs associated with bacterial resistance to phage, which can inform strategies to enhance phage therapy efficacy. In summary, our findings provide a theoretical foundation for the prevention and control of clinical O157:H7 strains.
O157:H7是一种主要的食源性病原体,也是全球食品安全的关键问题。噬菌体疗法为抗生素治疗提供了一种有前景的、高度特异性的生物替代方案。然而,噬菌体疗法的临床应用常常受到细菌耐药性快速出现的限制。在本研究中,我们检测了O157:H7菌株EDL933与两种T4样噬菌体之间的相互作用,评估宿主菌株产生噬菌体抗性所产生的适应性代价。我们的结果表明,噬菌体PSD2001利用荚膜多糖和脂多糖作为吸附受体,而噬菌体PNJ212将外膜蛋白C(OmpC)作为其吸附受体。值得注意的是,两种噬菌体都采用类gp37蛋白作为受体结合蛋白,突出了EDL933上受体的多样性以及噬菌体-宿主识别机制的复杂性。此外,本研究确定了环境中噬菌体抗性的适应性代价,包括抗生素敏感性、生物膜形成能力、生存能力和定植能力。这些发现加深了我们对噬菌体-宿主相互作用的理解,并为噬菌体疗法的应用提供了有价值的见解。
重要性
噬菌体疗法为对抗耐抗生素细菌感染提供了一种创新策略。为应对噬菌体抗性菌株的挑战,我们可以采用两种策略:使用针对多种细菌受体的噬菌体鸡尾酒来延缓抗性发展;以及实施利用噬菌体抗性细菌的适应性权衡的“噬菌体转换"治疗策略。我们的研究深入了解了主要食源性病原体O157:H7中的噬菌体受体识别机制。我们确定了关键的靶标受体,包括细菌荚膜多糖、脂多糖和OmpC,并发现这些噬菌体的受体结合策略类似于T4噬菌体尾丝蛋白gp37的策略。此外,我们揭示了细菌对噬菌体抗性相关的适应性代价,这可为提高噬菌体疗法疗效的策略提供参考。总之,我们的发现为临床O157:H7菌株的预防和控制提供了理论基础。