Suppr超能文献

结肠发酵的优化:对黄烷-3-醇分解代谢和微生物群调节的见解。

Optimization of an Colonic Fermentation: Insights into Flavan-3-ol Catabolism and Microbiota Modulation.

作者信息

Tosi Nicole, Mancabelli Leonardo, Alessandri Giulia, Turroni Francesca, Ventura Marco, Del Rio Daniele, Mena Pedro, Bresciani Letizia

机构信息

Human Nutrition Unit, Department of Food & Drug, University of Parma, Via Volturno 39, 43125 Parma, Italy.

Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy.

出版信息

J Agric Food Chem. 2025 Jul 2;73(26):16429-16443. doi: 10.1021/acs.jafc.5c06932. Epub 2025 Jun 17.

Abstract

fecal fermentation models are essential for studying gut microbiota-mediated metabolism of dietary flavan-3-ols. Current methodologies typically limit fermentation periods to 24 h, potentially overlooking the complete kinetics of catabolites. This study aims to extend fecal fermentation of dietary (poly)phenols up to 48 h to improve the physiological relevance of the model. Fermentation dynamics were assessed through the simultaneous monitoring of polyphenol catabolites, pH, and microbiota composition. One flavan-3-ol monomer ((-)-epicatechin) and two oligomers (procyanidin B2 and procyanidin A2) were fermented using human fecal slurry. Fourteen catabolites were quantified at five time points, revealing that flavan-3-ol polymerization and procyanidin linkage influence bioaccessibility and catabolism. The extended fermentation provided a more complete view of flavan-3-ol metabolism, with stable pH (5-6) and unaffected microbial composition. Substrate-specific effects on microbial alpha diversity suggest distinct resilience patterns, and putative associations between microbial taxa and phenolic catabolites were identified. This study demonstrates that 48 h incubation maintains physiological relevance, capturing late-stage catabolites, making the colonic model more reliable, with significant implications for understanding the colonic fate of undigested dietary (poly)phenols and the microorganisms possibly involved in their transformation.

摘要

粪便发酵模型对于研究肠道微生物群介导的膳食黄烷-3-醇代谢至关重要。目前的方法通常将发酵时间限制在24小时,这可能会忽略代谢物的完整动力学。本研究旨在将膳食(多)酚的粪便发酵时间延长至48小时,以提高模型的生理相关性。通过同时监测多酚代谢物、pH值和微生物群组成来评估发酵动力学。使用人类粪便悬液对一种黄烷-3-醇单体((-)-表儿茶素)和两种低聚物(原花青素B2和原花青素A2)进行发酵。在五个时间点对14种代谢物进行了定量分析,结果表明黄烷-3-醇聚合和原花青素连接会影响生物可及性和分解代谢。延长的发酵过程提供了更完整的黄烷-3-醇代谢视图,pH值稳定(5-6),微生物组成未受影响。底物对微生物α多样性的特异性影响表明了不同的恢复模式,并确定了微生物分类群与酚类代谢物之间的假定关联。本研究表明,48小时的孵育保持了生理相关性,捕获了后期代谢物,使结肠模型更可靠,这对于理解未消化膳食(多)酚的结肠命运以及可能参与其转化的微生物具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95d5/12232328/83db2820ff0e/jf5c06932_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验