Arefeen Yamin, Levac Brett, Patel Bhairav, Ho Chang, Tamir Jonathan I
Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas, USA.
Department of Imaging Physics, MD Anderson Cancer Center, Houston, Texas, USA.
Magn Reson Med. 2025 Oct;94(4):1546-1562. doi: 10.1002/mrm.30585. Epub 2025 Jun 17.
Magnetic Resonance Imaging (MRI) enables non-invasive assessment of brain abnormalities during early life development. Permanent magnet scanners operating in the neonatal intensive care unit (NICU) facilitate MRI of sick infants, but have long scan times due to lower signal-to-noise ratios (SNR) and limited receive coils. This work accelerates in-NICU MRI with diffusion probabilistic generative models by developing a training pipeline accounting for these challenges.
We establish a novel training dataset of clinical, 1 Tesla neonatal MR images in collaboration with Aspect Imaging and Sha'are Zedek Medical Center. We propose a pipeline to handle the low quantity and SNR of our real-world dataset (1) modifying existing network architectures to support varying resolutions; (2) training a single model on all data with learned class embedding vectors; (3) applying self-supervised denoising before training; and (4) reconstructing by averaging posterior samples. Retrospective under-sampling experiments, accounting for signal decay, evaluated each item of our proposed methodology. A clinical reader study with practicing pediatric neuroradiologists evaluated our proposed images reconstructed from under-sampled data.
Combining all data, denoising pre-training, and averaging posterior samples yields quantitative improvements in reconstruction. The generative model decouples the learned prior from the measurement model and functions at two acceleration rates without re-training. The reader study suggests that proposed images reconstructed from under-sampled data are adequate for clinical use.
Diffusion probabilistic generative models applied with the proposed pipeline to handle challenging real-world datasets could reduce the scan time of in-NICU neonatal MRI.
磁共振成像(MRI)能够在生命早期发育过程中对脑异常进行非侵入性评估。在新生儿重症监护病房(NICU)中运行的永磁扫描仪便于对患病婴儿进行MRI检查,但由于信噪比(SNR)较低和接收线圈有限,扫描时间较长。这项工作通过开发一种考虑到这些挑战的训练流程,利用扩散概率生成模型加速NICU中的MRI检查。
我们与Aspect Imaging和Sha'are Zedek医疗中心合作,建立了一个新的包含1特斯拉临床新生儿MR图像的训练数据集。我们提出了一个流程来处理我们真实世界数据集的低数量和低信噪比问题:(1)修改现有网络架构以支持不同分辨率;(2)使用学习到的类别嵌入向量在所有数据上训练单个模型;(3)在训练前应用自监督去噪;(4)通过对后验样本求平均进行重建。考虑信号衰减的回顾性欠采样实验评估了我们提出的方法的每一项。一项针对执业儿科神经放射科医生的临床阅片者研究评估了我们从欠采样数据重建的图像。
结合所有数据、去噪预训练和对后验样本求平均,在重建方面产生了定量的改进。生成模型将学习到的先验与测量模型解耦,并能在两种加速率下运行而无需重新训练。阅片者研究表明,从欠采样数据重建的图像足以用于临床。
将扩散概率生成模型与所提出的流程应用于处理具有挑战性的真实世界数据集,可以减少NICU中新生儿MRI的扫描时间。