Chand Jyothi Rikhab, Jacob Mathews
Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242 USA.
IEEE Trans Comput Imaging. 2024;10:1250-1265. doi: 10.1109/tci.2024.3449101. Epub 2024 Aug 23.
We introduce multi-scale energy models to learn the prior distribution of images, which can be used in inverse problems to derive the Maximum A Posteriori (MAP) estimate and to sample from the posterior distribution. Compared to the traditional single-scale energy models, the multi-scale strategy improves the estimation accuracy and convergence of the MAP algorithm, even when it is initialized far away from the solution. We propose two kinds of multi-scale strategies: a) the explicit (e-MuSE) framework, where we use a sequence of explicit energies, each corresponding to a smooth approximation of the original negative log-prior, and b) the implicit (i-MuSE), where we rely on a single energy function whose gradients at different scales closely match the corresponding e-MuSE gradients. Although both schemes improve convergence and accuracy, the e-MuSE MAP solution depends on the scheduling strategy, including the choice of intermediate scales and exit conditions. In contrast, the i-MuSE formulation is significantly simpler, resulting in faster convergence and improved performance. We compare the performance of the proposed MuSE models in the context of Magnetic Resonance (MR) image recovery. The results demonstrate that the multi-scale framework yields a MAP reconstruction comparable in quality to the End-to-End (E2E) trained models, while being relatively unaffected by the changes in the forward model. In addition, the i-MuSE scheme also allows the generation of samples from the posterior distribution, enabling us to estimate the uncertainty maps.
我们引入多尺度能量模型来学习图像的先验分布,该模型可用于逆问题,以推导最大后验(MAP)估计并从后验分布中采样。与传统的单尺度能量模型相比,多尺度策略提高了MAP算法的估计精度和收敛性,即使在远离解的初始条件下也是如此。我们提出了两种多尺度策略:a)显式(e-MuSE)框架,我们使用一系列显式能量,每个能量对应于原始负对数先验的平滑近似;b)隐式(i-MuSE)框架,我们依赖于单个能量函数,其在不同尺度上的梯度与相应的e-MuSE梯度紧密匹配。尽管这两种方案都提高了收敛性和准确性,但e-MuSE MAP解取决于调度策略,包括中间尺度的选择和退出条件。相比之下,i-MuSE公式要简单得多,从而实现了更快的收敛和更好的性能。我们在磁共振(MR)图像恢复的背景下比较了所提出的MuSE模型的性能。结果表明,多尺度框架产生的MAP重建质量与端到端(E2E)训练模型相当,同时相对不受前向模型变化的影响。此外,i-MuSE方案还允许从后验分布中生成样本,使我们能够估计不确定性图。