Suppr超能文献

用于成像逆问题的多尺度能量(MuSE)框架。

Multi-Scale Energy (MuSE) framework for inverse problems in imaging.

作者信息

Chand Jyothi Rikhab, Jacob Mathews

机构信息

Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA 52242 USA.

出版信息

IEEE Trans Comput Imaging. 2024;10:1250-1265. doi: 10.1109/tci.2024.3449101. Epub 2024 Aug 23.

Abstract

We introduce multi-scale energy models to learn the prior distribution of images, which can be used in inverse problems to derive the Maximum A Posteriori (MAP) estimate and to sample from the posterior distribution. Compared to the traditional single-scale energy models, the multi-scale strategy improves the estimation accuracy and convergence of the MAP algorithm, even when it is initialized far away from the solution. We propose two kinds of multi-scale strategies: a) the explicit (e-MuSE) framework, where we use a sequence of explicit energies, each corresponding to a smooth approximation of the original negative log-prior, and b) the implicit (i-MuSE), where we rely on a single energy function whose gradients at different scales closely match the corresponding e-MuSE gradients. Although both schemes improve convergence and accuracy, the e-MuSE MAP solution depends on the scheduling strategy, including the choice of intermediate scales and exit conditions. In contrast, the i-MuSE formulation is significantly simpler, resulting in faster convergence and improved performance. We compare the performance of the proposed MuSE models in the context of Magnetic Resonance (MR) image recovery. The results demonstrate that the multi-scale framework yields a MAP reconstruction comparable in quality to the End-to-End (E2E) trained models, while being relatively unaffected by the changes in the forward model. In addition, the i-MuSE scheme also allows the generation of samples from the posterior distribution, enabling us to estimate the uncertainty maps.

摘要

我们引入多尺度能量模型来学习图像的先验分布,该模型可用于逆问题,以推导最大后验(MAP)估计并从后验分布中采样。与传统的单尺度能量模型相比,多尺度策略提高了MAP算法的估计精度和收敛性,即使在远离解的初始条件下也是如此。我们提出了两种多尺度策略:a)显式(e-MuSE)框架,我们使用一系列显式能量,每个能量对应于原始负对数先验的平滑近似;b)隐式(i-MuSE)框架,我们依赖于单个能量函数,其在不同尺度上的梯度与相应的e-MuSE梯度紧密匹配。尽管这两种方案都提高了收敛性和准确性,但e-MuSE MAP解取决于调度策略,包括中间尺度的选择和退出条件。相比之下,i-MuSE公式要简单得多,从而实现了更快的收敛和更好的性能。我们在磁共振(MR)图像恢复的背景下比较了所提出的MuSE模型的性能。结果表明,多尺度框架产生的MAP重建质量与端到端(E2E)训练模型相当,同时相对不受前向模型变化的影响。此外,i-MuSE方案还允许从后验分布中生成样本,使我们能够估计不确定性图。

相似文献

1
Multi-Scale Energy (MuSE) framework for inverse problems in imaging.用于成像逆问题的多尺度能量(MuSE)框架。
IEEE Trans Comput Imaging. 2024;10:1250-1265. doi: 10.1109/tci.2024.3449101. Epub 2024 Aug 23.
7
Rehabilitation following surgery for lumbar spinal stenosis.腰椎管狭窄症手术后的康复
Cochrane Database Syst Rev. 2013 Dec 9;2013(12):CD009644. doi: 10.1002/14651858.CD009644.pub2.

引用本文的文献

本文引用的文献

4
Plug-and-Play Image Restoration With Deep Denoiser Prior.基于深度去噪器先验的即插即用图像恢复
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6360-6376. doi: 10.1109/TPAMI.2021.3088914. Epub 2022 Sep 14.
8
Regularization by Denoising: Clarifications and New Interpretations.通过去噪进行正则化:阐释与新解读
IEEE Trans Comput Imaging. 2019 Mar;5(1):52-67. doi: 10.1109/TCI.2018.2880326. Epub 2018 Nov 9.
9
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.MoDL:基于模型的深度学习架构用于反问题。
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验