Suppr超能文献

根据植物标本估计根系深度可能比使用大型性状数据库更准确。

Estimating Rooting Depth From Herbarium Specimens Might Be More Accurate Than Using Large Trait Databases.

作者信息

Takács Attila, Molnár V Attila, E-Vojtkó Anna, Nagy Jenő

机构信息

Department of Botany University of Debrecen Debrecen Hungary.

HUN-REN-UD Conservation Biology Research Group Debrecen Hungary.

出版信息

Ecol Evol. 2025 Jun 17;15(6):e71529. doi: 10.1002/ece3.71529. eCollection 2025 Jun.

Abstract

Global databases of plant functional traits are facing issues in data heterogeneity and taxonomical or geographical representativeness. To fill data gaps, natural history collections, such as herbaria, have become widely accepted as a potential source of data on functional traits. Surprisingly, root characteristics of plants still have not been studied on herbarium materials. We investigated whether rooting depth data from herbarium samples are realistic enough to be used in ecological studies. We measured original maximum rooting depth records on herbarium specimens and individuals from the field. Global data from the TRY database were also obtained. We tested the pairwise correlations between data from the three datasets. The effect of life form, taxonomic position, and average species height on rooting depth was also evaluated. Herbarium data showed strong correlation to field records, while records from the TRY database showed a weaker correlation with data measured on herbarium materials. Life form, taxonomic position, and height proved to be good predictors of rooting depth collected from the field or the herbarium; however, the model including data obtained from the TRY as the response variable performed weaker. We constructed an equation for predicting realistic average maximum rooting depth values of a given species based on herbarium data. Strong correlation among the field and herbarium datasets suggests that museal collections can be considered as resources of root trait data. Although herbarium-based rooting depth measurements usually represent lower values than field records, the correction of the herbarium-derived dataset is solvable. These corrected data might be more accurate than using large, global trait databases. Herbarium work might be a more sustainable, time- and cost-effective practice than field sampling. The inclusion of herbarium-derived information in trait-based studies, as well as in global databases, can improve these sources spatially, temporally, and taxonomically.

摘要

全球植物功能性状数据库在数据异质性以及分类学或地理代表性方面面临问题。为了填补数据空白,诸如植物标本馆之类的自然历史馆藏已被广泛认可为功能性状数据的潜在来源。令人惊讶的是,植物的根系特征尚未在植物标本材料上得到研究。我们调查了来自植物标本样本的生根深度数据是否足够真实,可用于生态研究。我们测量了植物标本馆标本以及田间个体的原始最大生根深度记录。还获取了来自TRY数据库的全球数据。我们测试了这三个数据集数据之间的成对相关性。还评估了生活型、分类地位和平均物种高度对生根深度的影响。植物标本馆数据与田间记录显示出很强的相关性,而TRY数据库的记录与在植物标本材料上测量的数据相关性较弱。生活型、分类地位和高度被证明是从田间或植物标本馆收集的生根深度的良好预测指标;然而,以TRY获得的数据作为响应变量的模型表现较弱。我们构建了一个基于植物标本馆数据预测给定物种实际平均最大生根深度值的方程。田间和植物标本馆数据集之间的强相关性表明,博物馆馆藏可被视为根系性状数据的资源。尽管基于植物标本馆的生根深度测量通常代表比田间记录更低的值,但植物标本馆衍生数据集的校正问题是可以解决的。这些校正后的数据可能比使用大型全球性状数据库更准确。植物标本馆工作可能比田间采样更具可持续性、更节省时间和成本。将植物标本馆衍生的信息纳入基于性状的研究以及全球数据库中,可以在空间、时间和分类学上改进这些数据源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea84/12171237/bb1ded6050b7/ECE3-15-e71529-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验