Suppr超能文献

MIMIC-IV数据库中与肺癌相关的因素。

Factors linked to lung cancer in MIMIC-IV database.

作者信息

Fang Chengyuan, Bai Yuwen, Xin Yanzhong, Zhang Luquan, Ma Jianqun

机构信息

Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China.

出版信息

J Thorac Dis. 2025 May 30;17(5):2765-2777. doi: 10.21037/jtd-2024-1998. Epub 2025 May 26.

Abstract

BACKGROUND

Lung cancer (LC) is the most prevalent type of cancer, yet early prediction of hospital mortality and risk stratification remains inadequate. This study aims to develop a predictive model for in-hospital mortality among patients with LC.

METHODS

This study utilized data from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database [2008-2019]. Patients were randomly assigned to training (70%) and validation (30%) cohorts. Baseline characteristics and their associations with LC outcomes were analyzed. Feature selection was performed using Cox regression in the training set. The selected variables were incorporated into a nomogram model, of which its predictive performance and clinical utility were evaluated using calibration plots, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA) in both cohorts.

RESULTS

A total of 645 LC patients were included, with 451 in the training set and 194 in the validation set. Twenty-two baseline characteristics were significantly associated with LC mortality. Six key variables-alkaline phosphatase (ALP) minimum (min), bilirubin total min, length of stay (LOS), race, respiratory rate min, and Simplified Acute Physiology Score II (SAPS II)-were identified for nomogram development. The final model demonstrated strong predictive accuracy and clinical utility, achieving an area under the curve (AUC) exceeding 0.7 in both cohorts.

CONCLUSIONS

This study identified key risk factors for in-hospital mortality among critically ill patients with LC and developed a robust predictive model using MIMIC-IV data. The findings provide valuable insights into LC prognosis and may aid in clinical decision-making.

摘要

背景

肺癌(LC)是最常见的癌症类型,但对医院死亡率的早期预测和风险分层仍显不足。本研究旨在建立一种预测肺癌患者院内死亡率的模型。

方法

本研究使用了重症监护医学信息数据库-IV(MIMIC-IV)[2008 - 2019年]的数据。患者被随机分配到训练组(70%)和验证组(30%)。分析了基线特征及其与肺癌结局的关联。在训练集中使用Cox回归进行特征选择。将选定的变量纳入列线图模型,通过校准图、受试者工作特征(ROC)曲线和决策曲线分析(DCA)在两个队列中评估其预测性能和临床效用。

结果

共纳入645例肺癌患者,其中训练组451例,验证组194例。22项基线特征与肺癌死亡率显著相关。确定了六个关键变量——碱性磷酸酶(ALP)最小值(min)、总胆红素最小值、住院时间(LOS)、种族、呼吸频率最小值和简化急性生理学评分II(SAPS II)用于列线图构建。最终模型显示出强大的预测准确性和临床效用,在两个队列中的曲线下面积(AUC)均超过0.7。

结论

本研究确定了重症肺癌患者院内死亡的关键危险因素,并利用MIMIC-IV数据开发了一个强大的预测模型。这些发现为肺癌预后提供了有价值的见解,并可能有助于临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f4/12170021/e479829d4c3b/jtd-17-05-2765-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验