Chai Muyuan, Bu Haolin, Zheng Rui, Yang Zhilu, Shi Xuetao
Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital, Southern Medical University, Dongguan 523059, P. R. China.
National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China.
Research (Wash D C). 2025 Jun 17;2025:0742. doi: 10.34133/research.0742. eCollection 2025.
Strain-stiffening hydrogels, which mimic the nonlinear mechanical behavior of biological tissues such as skin, arteries, and cartilage, hold transformative potential for biomedical applications. This study introduces immersion phase separation (IPS) 3-dimensional (3D) printing, an innovative technique that enables the one-step fabrication of strain-stiffening hydrogel scaffolds with intricate, hierarchical architectures. This technique addresses the long-standing challenge of balancing structural complexity and intrinsic mechanoresponsive behavior in traditional hydrogel fabrication methods. By leveraging dynamic hydrophobic interactions and solvent exchange kinetics, IPS 3D printing achieves multiscale control over pore architectures (5 to 200 μm) and anisotropic microchannels while preserving J-shaped stress-strain curves (fracture stress: ~0.7 MPa; elongation: >1,000%). The physically cross-linked network enables closed-loop recyclability (>95% material recovery) without performance degradation, while functional fillers (e.g., carbon nanotubes, copper, and hydroxyapatite) enhance properties such as electrical conductivity (2-orders-of-magnitude improvement) and real-time motion sensing capabilities. This platform facilitates the creation of patient-specific implants with tailored mechanical properties and paves the way for adaptive biohybrid devices that mimic the dynamic behavior of native tissues, holding promise for regenerative medicine, soft robotics, and advanced biomedical applications. IPS 3D printing uniquely resolves the trade-off between structural sophistication and functional biomimicry, establishing a paradigm for replicating dynamic biological tissues.
应变硬化水凝胶能够模拟皮肤、动脉和软骨等生物组织的非线性力学行为,在生物医学应用方面具有变革潜力。本研究介绍了浸没相分离(IPS)三维(3D)打印技术,这是一种创新技术,能够一步制造具有复杂层次结构的应变硬化水凝胶支架。该技术解决了传统水凝胶制造方法中长期存在的在结构复杂性和内在机械响应行为之间取得平衡的挑战。通过利用动态疏水相互作用和溶剂交换动力学,IPS 3D打印在保持J形应力-应变曲线(断裂应力:约0.7兆帕;伸长率:>1000%)的同时,实现了对孔隙结构(5至200微米)和各向异性微通道的多尺度控制。物理交联网络实现了闭环可回收性(材料回收率>95%)且性能不下降,而功能填料(如碳纳米管、铜和羟基磷灰石)则增强了诸如电导率(提高2个数量级)和实时运动传感能力等性能。该平台有助于制造具有定制机械性能的个性化植入物,并为模仿天然组织动态行为的自适应生物混合装置铺平道路,有望用于再生医学、软机器人技术和先进生物医学应用。IPS 3D打印独特地解决了结构复杂性和功能仿生之间的权衡问题,为复制动态生物组织建立了一种范例。