Van Gaever Femke, Vandecruys Paul, Driege Yasmine, Kim Seo Woo, Thevelein Johan M, Beyaert Rudi, Staal Jens
VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium.
Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
Metab Eng Commun. 2025 May 30;20:e00263. doi: 10.1016/j.mec.2025.e00263. eCollection 2025 Jun.
The plant hormone abscisic acid (ABA) has gained attention for its role in animals and humans, particularly due to its protective effects in various immune and inflammatory disorders. Given its high concentrations in fruits like figs, bilberries and apricots, ABA shows promise as a nutraceutical. However scalability, short half-life and cost limit the use of ABA-enriched fruit extracts and synthetic supplements. In this study, we propose an alternative ABA administration method to overcome these challenges. We genetically engineered a strain of the probiotic he biosynthesis pathway from , four genes () were integrated into , enabling ABA production at 30 °C, as previously described in . Introducing an additional cytochrome P450 reductase gene resulted in a 7-fold increase in ABA titers, surpassing previous ABA-producing strains. Supplementation of the ABA-producing in the diet of mice (at a concentration of 5 × 10 CFU/g) led to effective gut colonization but resulted in low serum ABA levels (approximately 1.8 ng/mL). The absence of detectable serum ABA after administration of the ABA-producing probiotic through oral gavage, prompted further investigation to determine the underlying cause. The physiological body temperature (37 °C) was identified as a major bottleneck for ABA production. Modifications to enhance the mevalonate pathway flux improved ABA levels at 37 °C. However, additional modifications are needed to optimize ABA production before testing this probiotic in disease contexts in mice.
植物激素脱落酸(ABA)因其在动物和人类中的作用而受到关注,特别是由于其在各种免疫和炎症性疾病中的保护作用。鉴于其在无花果、越橘和杏子等水果中的高浓度,ABA有望成为一种营养保健品。然而,可扩展性、短半衰期和成本限制了富含ABA的水果提取物和合成补充剂的使用。在本研究中,我们提出了一种替代的ABA给药方法来克服这些挑战。我们对一种益生菌菌株进行了基因工程改造,将来自的生物合成途径中的四个基因整合到中,使其能够在30°C下产生ABA,如之前在中所述。引入额外的细胞色素P450还原酶基因导致ABA滴度增加了7倍,超过了之前产生ABA的菌株。在小鼠饮食中添加产生ABA的(浓度为5×10CFU/g)导致有效的肠道定植,但血清ABA水平较低(约1.8ng/mL)。通过口服灌胃给予产生ABA的益生菌后未检测到血清ABA,促使进一步研究以确定潜在原因。生理体温(37°C)被确定为ABA产生的主要瓶颈。增强甲羟戊酸途径通量的修饰提高了37°C时的ABA水平。然而,在小鼠疾病背景下测试这种益生菌之前,还需要进行额外的修饰以优化ABA的产生。