Carbajo Carla Gilabert, Han Xiaoyang, Savur Bhairavi, Upadhyaya Arushi, Taha Fatima, Tinti Michele, Wheeler Richard J, Yates Phillip A, Tiengwe Calvin
Department of Life Sciences, Imperial College London, London, UK.
Wellcome Trust Centre for Anti-Infectives Research, University of Dundee, Dundee, UK.
Open Biol. 2025 Feb;15(2):240334. doi: 10.1098/rsob.240334. Epub 2025 Feb 26.
Kinetoplastid parasites cause diseases that threaten human and animal health. To survive transitions between vertebrate hosts and insect vectors, these parasites rely on precise regulation of gene expression to adapt to environmental changes. Since gene regulation in kinetoplastids is primarily post-transcriptional, developing efficient genetic tools for modifying genes at their endogenous loci while preserving regulatory mRNA elements is crucial for studying their complex biology. We present a CRISPR/Cas9-based tagging system that preserves untranslated regulatory elements and uses a viral 2A peptide from to generate two separate proteins from a single transcript: a drug-selectable marker and a tagged protein of interest. This dual-function design maintains native control elements, allowing discrimination between regulation of transcript abundance, translational efficiency, and post-translational events. We validate the system by tagging six proteins and demonstrate (i) high-efficiency positive selection and separation of drug-selectable marker and target protein, (ii) preservation of regulatory responses to environmental cues like heat shock and iron availability, and (iii) maintenance of stage-specific regulation during developmental transitions. This versatile toolkit is applicable to all kinetoplastids amenable to CRISPR/Cas9 editing, providing a powerful reverse genetic tool for studying post-transcriptional regulation and protein function in organisms where post-transcriptional control is dominant.
动质体寄生虫会引发威胁人类和动物健康的疾病。为了在脊椎动物宿主和昆虫媒介之间的转换中生存,这些寄生虫依靠基因表达的精确调控来适应环境变化。由于动质体中的基因调控主要是转录后调控,因此开发高效的遗传工具,在内源基因位点修饰基因的同时保留调控性mRNA元件,对于研究其复杂生物学特性至关重要。我们提出了一种基于CRISPR/Cas9的标记系统,该系统保留非翻译调控元件,并使用来自[病毒名称]的病毒2A肽,从单个转录本生成两种独立的蛋白质:一种药物可选择标记和一种感兴趣的标记蛋白。这种双功能设计保留了天然调控元件,能够区分转录本丰度、翻译效率和翻译后事件的调控。我们通过标记六种[蛋白质名称]蛋白来验证该系统,并证明(i)高效阳性选择以及药物可选择标记和靶蛋白的分离,(ii)保留对热休克和铁可用性等环境线索的调控反应,以及(iii)在发育转变过程中维持阶段特异性调控。这种多功能工具包适用于所有适合CRISPR/Cas9编辑的动质体,为研究转录后调控占主导地位的生物体中的转录后调控和蛋白质功能提供了强大的反向遗传工具。