Suppr超能文献

基于SEA-YOLO v8的路面损伤检测研究

Research on road surface damage detection based on SEA-YOLO v8.

作者信息

Zhao Yuxi, Shi Baoyong, Duan Xiaoguang, Zhu Wenxing, Ren Liying, Liao Chang

机构信息

Jinan Zhuolun Intelligent Transportation Technology Co., LTD, Jinan, Shandong, China.

Liaocheng Inspection and Testing Center, Liaocheng, Shandong, China.

出版信息

PLoS One. 2025 Jun 18;20(6):e0324439. doi: 10.1371/journal.pone.0324439. eCollection 2025.

Abstract

Road damage detection is of great significance to traffic safety and road maintenance. However, the existing target detection technology still has shortcomings in accuracy, real-time and adaptability. In order to meet this challenge, this study constructed SEA-YOLO v8 model for road damage detection. Firstly, the SBS module is constructed to optimize the computational complexity, achieve real-time target detection under limited hardware resources, successfully reduce the model parameters, and make the model more lightweight; Secondly, we integrate the EMA attention mechanism module into the neck component, enabling the model to utilize feature information from different layers, enabling the model to selectively focus on key areas and improve feature representation; Then, an adaptive attention feature pyramid structure is proposed to enhance the feature fusion capability of the network; Finally, lightweight shared convolutional detection head (LSCD-Head) is introduced to improve feature representation and reduce the number of parameters. The experimental results on the RDD2022 dataset show that the SEA-YOLO v8 model has achieved 63.2% mAP50. The performance is better than yolov8 model and mainstream target detection model. This shows that in complex urban traffic scenarios, the model has high detection accuracy and adaptability, can accurately locate and detect road damage, save manpower and material resources, provide guidance for road damage assessment and maintenance, and promote the sustainable development of urban roads.

摘要

道路损伤检测对交通安全和道路养护具有重要意义。然而,现有的目标检测技术在准确性、实时性和适应性方面仍存在不足。为应对这一挑战,本研究构建了用于道路损伤检测的SEA-YOLO v8模型。首先,构建SBS模块以优化计算复杂度,在有限硬件资源下实现实时目标检测,成功减少模型参数,使模型更轻量化;其次,将EMA注意力机制模块集成到颈部组件中,使模型能够利用来自不同层的特征信息,使模型能够选择性地聚焦于关键区域并提高特征表示能力;然后,提出自适应注意力特征金字塔结构以增强网络的特征融合能力;最后,引入轻量化共享卷积检测头(LSCD-Head)以提高特征表示能力并减少参数数量。在RDD2022数据集上的实验结果表明,SEA-YOLO v8模型实现了63.2%的mAP50。性能优于yolov8模型和主流目标检测模型。这表明在复杂的城市交通场景中,该模型具有较高的检测精度和适应性,能够准确地定位和检测道路损伤,节省人力和物力资源,为道路损伤评估和养护提供指导,促进城市道路的可持续发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2588/12176152/93cf5999491c/pone.0324439.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验