Banerjee Rimi, Kumar Abhishek, Tan Thomas Caiwei, Gupta Manoj, Jia Ridong, Szriftgiser Pascal, Ducournau Guillaume, Chong Yidong, Singh Ranjan
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
Laboratoire de Physique des Lasers, Atomes et Molécules, PhLAM, UMR 8523 Université de Lille, CNRS, 59655 Villeneuve d'Ascq, France.
Sci Adv. 2025 Jun 20;11(25):eadu2526. doi: 10.1126/sciadv.adu2526. Epub 2025 Jun 18.
Valley Hall photonic crystals (VPCs) offer the potential for creating topological waveguides capable of guiding light through sharp bends on a chip, enabling seamless integration with functional components in compact spaces, making them a promising technology for terahertz topological photonic integrated circuits. However, a key limitation for terahertz-scale integrated VPC-based devices has been the absence of arbitrary bend interconnects, as traditional VPC-designs restricted to principal lattice axes (i.e., only 0°, 60°, or 120°) due to crystalline symmetry. Here, we present an on-chip, all-silicon implementation of deformed VPCs that enable robust transmission along arbitrary shapes and bends. Although the lattice is amorphous and lacks long-range periodicity, the topological protection is sustained by short-range order. Furthermore, we show an amorphous lattice functioning as a frequency-dependent router, splitting input signals into two perpendicular output ports. We also demonstrate on-chip terahertz communication, achieving data rates of up to 72 Gbps. Our findings show that amorphous topological photonic crystals enhance interconnect adaptability while preserving performance.
谷厅光子晶体(VPC)为创建拓扑波导提供了潜力,这种波导能够在芯片上引导光通过急转弯,从而在紧凑空间中与功能组件实现无缝集成,使其成为太赫兹拓扑光子集成电路的一项有前途的技术。然而,基于太赫兹规模集成VPC的器件的一个关键限制是缺乏任意弯曲互连,因为传统的VPC设计由于晶体对称性而仅限于主晶格轴(即仅0°、60°或120°)。在此,我们展示了一种变形VPC的片上全硅实现方式,它能够沿着任意形状和弯曲实现稳健传输。尽管晶格是非晶态的且缺乏长程周期性,但拓扑保护由短程有序维持。此外,我们展示了一种非晶晶格作为频率依赖路由器的功能,将输入信号分成两个垂直输出端口。我们还演示了片上太赫兹通信,实现了高达72 Gbps的数据速率。我们的研究结果表明,非晶拓扑光子晶体在保持性能的同时增强了互连适应性。