Suppr超能文献

人工智能在预测免疫治疗的疗效和毒性方面的应用、挑战及未来方向。

Artificial intelligence in predicting efficacy and toxicity of Immunotherapy: Applications, challenges, and future directions.

作者信息

Wen Qiang, Qiu Liang, Qiu Chenhui, Che Keying, Zeng Renya, Wang Xi, Cao Pingdong, Xing Lei, Yang Zhe, Yu Jinming

机构信息

Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, 250021, China.

Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, CA, United States.

出版信息

Cancer Lett. 2025 Oct 10;630:217881. doi: 10.1016/j.canlet.2025.217881. Epub 2025 Jun 16.

Abstract

Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, becoming a standard approach for various tumor types. Consequently, accurately predicting their efficacy has become crucial in clinical practice. Artificial intelligence (AI) has emerged as a powerful tool for extracting meaningful insights from complex clinical datasets, showing immense potential to transform medical decision-making. Therefore, the integration of AI techniques into immunotherapy facilitates the development of predictive models for immunotherapeutic efficacy based on radiological, genomic, and pathological data, ultimately refining the precision treatment of tumors. In this review, we systematically summarize the application of AI in predicting the efficacy of ICIs, and briefly address the challenges and future directions in this field.

摘要

免疫检查点抑制剂(ICIs)彻底改变了癌症治疗方式,成为多种肿瘤类型的标准治疗方法。因此,准确预测其疗效在临床实践中变得至关重要。人工智能(AI)已成为从复杂临床数据集中提取有意义见解的强大工具,显示出改变医疗决策的巨大潜力。因此,将AI技术整合到免疫治疗中有助于基于放射学、基因组学和病理学数据开发免疫治疗疗效预测模型,最终优化肿瘤的精准治疗。在本综述中,我们系统地总结了AI在预测ICIs疗效方面的应用,并简要探讨了该领域的挑战和未来方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验