Zhang Teng, Chen Lang, Yang Kun, Zhang Bin, Yang Tuo, Long Yao, Lu Jianying, Liu Danyang, Chen Jun
Beijing Institute of Technology, Beijing, China.
Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, China.
Commun Chem. 2025 Jun 19;8(1):188. doi: 10.1038/s42004-025-01582-3.
Liquid nitromethane (NM) may undergo detonation under accidental stimuli, making kinetic modeling crucial for assessing the safety risks associated with its detonation. This study employs first-principles molecular dynamics to investigate chemical behavior of nitromethane under high temperature (>2000 K) and pressure (>1 GPa) conditions, revealing five previously unidentified intermediates (CHNOH, CHNOH, CHNOH, CHONO, NOCHNO) and establishing a nitromethane chemical kinetic model which include 543 elementary reactions and 79 species, which is successfully applied in the prediction of nitromethane detonation characteristics. The calculated detonation pressure (13.5 GPa) and reaction zone time (46 ns) are in agreement with the experimental values (11.5-12.0 GPa; 50-53 ns). We also uncover the delayed response mechanism in pure nitromethane detonation. The major pollutants, many CO (34.8%), and small amount of NH (1.7%), HCN (1.0%), etc. in nitromethane detonation products are found. These findings advance the fundamental understanding of nitromethane's detonation reaction kinetics.
液态硝基甲烷(NM)在意外刺激下可能会发生爆炸,因此动力学建模对于评估其爆炸相关的安全风险至关重要。本研究采用第一性原理分子动力学方法,研究了硝基甲烷在高温(>2000 K)和高压(>1 GPa)条件下的化学行为,揭示了五种先前未识别的中间体(CHNOH、CHNOH、CHNOH、CHONO、NOCHNO),并建立了一个包含543个基元反应和79种物质的硝基甲烷化学动力学模型,该模型成功应用于硝基甲烷爆炸特性的预测。计算得到的爆轰压力(13.5 GPa)和反应区时间(46 ns)与实验值(11.5 - 12.0 GPa;50 - 53 ns)一致。我们还揭示了纯硝基甲烷爆炸中的延迟响应机制。在硝基甲烷爆炸产物中发现了主要污染物,许多CO(34.8%),以及少量的NH(1.7%)、HCN(1. – 0%)等。这些发现推进了对硝基甲烷爆炸反应动力学的基础理解。