Suppr超能文献

蝙蝠、虫子与婴儿:为何流行病学研究中的因果关系解读需要严格准则

Bats, bugs, and babies: why stringent guidelines are needed for cause-and-effect interpretation in epidemiological studies.

作者信息

Marx-Stoelting Philip, Tralau Tewes, Städele Veronika, Rotter Stefanie, Ritz Vera, Rahnenführer Jörg, Hengstler Jan G

机构信息

Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.

Department of Statistics, TU Dortmund University, Vogelpothsweg 87, 44227, Dortmund, Germany.

出版信息

Arch Toxicol. 2025 Jun 18. doi: 10.1007/s00204-025-04066-4.

Abstract

In a recently published study (Frank, 2024), the author claimed that farmers in the USA compensated for bat decline by increasing their insecticide use by 31.1%, which allegedly caused a 7.9% increase in human infant mortality. The author concluded that his "result highlights that real-world use levels of insecticides have a detrimental impact on health, even when used within regulatory limits". The study is a prime example of how statistics should not be used in a design based on a classical logical fallacy. That is, in short, factor A (detection of a lethal bat disease) correlates with factor B (increased insecticide use) and factor A also correlates with factor C (increased infant mortality). Based on a flawed logic, the author concludes that consequently a causal relationship exists between factor B (pesticide use) and factor C (infant mortality). Remarkably, the causal relationship between increased pesticide use (factor B) and increased infant mortality (factor C) was claimed despite not investigating a statistical correlation between these two factors. The study also contains numerous important but less obvious flaws, including the use of aggregated data to make inferences about individual outcomes; inadequate consideration of maternal characteristics; a suboptimal proxy for bat population declines; inadequate timing of 'treatment'; assumption of quasi-randomness; questionable binning of coefficients and a lack of data documentation. Scientifically, the article highlights the need for more stringent statistical and scientific quality controls. However, given the implications such cavalier claims have in the context of public health, it also shows that the scientific community urgently needs a better understanding of the robustness of statistical conclusions in the context of epidemiological and ecological studies.

摘要

在最近发表的一项研究(弗兰克,2024年)中,作者声称美国农民通过将杀虫剂使用量提高31.1%来弥补蝙蝠数量的下降,据称这导致人类婴儿死亡率上升了7.9%。作者得出结论称,他的“结果凸显出,即使在监管限制范围内使用杀虫剂,其实际使用水平也会对健康产生有害影响”。这项研究是一个典型例子,说明在基于经典逻辑谬误的设计中不应使用统计数据。简而言之,即因素A(致命蝙蝠疾病的检测)与因素B(杀虫剂使用量增加)相关,因素A也与因素C(婴儿死亡率上升)相关。基于有缺陷的逻辑,作者得出结论,因此因素B(农药使用)和因素C(婴儿死亡率)之间存在因果关系。值得注意的是,尽管没有调查这两个因素之间的统计相关性,但仍声称增加农药使用(因素B)和增加婴儿死亡率(因素C)之间存在因果关系。该研究还存在许多重要但不太明显的缺陷,包括使用汇总数据来推断个体结果;对孕产妇特征考虑不足;蝙蝠数量下降的替代指标不理想;“处理”时间安排欠佳;假设准随机性;系数分组存在问题以及缺乏数据记录。从科学角度来看,这篇文章凸显了更严格的统计和科学质量控制的必要性。然而,考虑到这种随意的说法在公共卫生背景下的影响,它也表明科学界迫切需要更好地理解流行病学和生态学研究背景下统计结论的稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验