Suppr超能文献

利用神经网络推进原子电子断层扫描技术。

Advancing atomic electron tomography with neural networks.

作者信息

Lee Juhyeok, Yang Yongsoo

机构信息

Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

出版信息

Appl Microsc. 2025 Jun 19;55(1):7. doi: 10.1186/s42649-025-00113-7.

Abstract

Accurate determination of three-dimensional (3D) atomic structures is crucial for understanding and controlling the properties of nanomaterials. Atomic electron tomography (AET) offers non-destructive atomic imaging with picometer-level precision, enabling the resolution of defects, interfaces, and strain fields in 3D, as well as the observation of dynamic structural evolution. However, reconstruction artifacts arising from geometric limitations and electron dose constraints can hinder reliable atomic structure determination. Recent progress has integrated deep learning, especially convolutional neural networks, into AET workflows to improve reconstruction fidelity. This review highlights recent advances in neural network-assisted AET, emphasizing its role in overcoming persistent challenges in 3D atomic imaging. By significantly enhancing the accuracy of both surface and bulk structural characterization, these methods are advancing the frontiers of nanoscience and enabling new opportunities in materials research and technology.

摘要

准确测定三维(3D)原子结构对于理解和控制纳米材料的性质至关重要。原子电子断层扫描(AET)提供具有皮米级精度的无损原子成像,能够解析三维中的缺陷、界面和应变场,以及观察动态结构演变。然而,由几何限制和电子剂量约束引起的重建伪影可能会阻碍可靠的原子结构测定。最近的进展已将深度学习,特别是卷积神经网络,集成到AET工作流程中,以提高重建保真度。本综述重点介绍了神经网络辅助AET的最新进展,强调其在克服三维原子成像中持续存在的挑战方面的作用。通过显著提高表面和体结构表征的准确性,这些方法正在推进纳米科学的前沿,并为材料研究和技术带来新的机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41cc/12177128/387d021c6fbe/42649_2025_113_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验