Shaw Luke, Haji-Ali Abdul-Lateef, Pereyra Marcelo, Zygalakis Konstantinos
Universitat Jaume I, Castello de la Plana, Spain.
Heriot-Watt University, Edinburgh, UK.
Philos Trans A Math Phys Eng Sci. 2025 Jun 19;383(2299):20240333. doi: 10.1098/rsta.2024.0333.
Generative diffusion models have recently emerged as a powerful strategy to perform stochastic sampling in Bayesian inverse problems, delivering remarkably accurate solutions for a wide range of challenging applications. However, diffusion models often require a large number of neural function evaluations per sample in order to deliver accurate posterior samples. As a result, using diffusion models as stochastic samplers for Monte Carlo integration in Bayesian computation can be highly computationally expensive, particularly in applications that require a substantial number of Monte Carlo samples for conducting uncertainty quantification analyses. This cost is especially high in large-scale inverse problems such as computational imaging, which rely on large neural networks that are expensive to evaluate. With quantitative imaging applications in mind, this paper presents a Multilevel Monte Carlo strategy that significantly reduces the cost of Bayesian computation with diffusion models. This is achieved by exploiting cost-accuracy trade-offs inherent to diffusion models to carefully couple models of different levels of accuracy in a manner that significantly reduces the overall cost of the calculation, without reducing the final accuracy. The proposed approach achieves a [Formula: see text]-to-[Formula: see text] reduction in computational cost with respect to standard techniques across three benchmark imaging problems.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.
生成扩散模型最近已成为在贝叶斯反问题中执行随机采样的一种强大策略,为广泛的具有挑战性的应用提供了非常精确的解决方案。然而,扩散模型通常每个样本需要大量的神经函数评估才能提供准确的后验样本。因此,在贝叶斯计算中使用扩散模型作为蒙特卡罗积分的随机采样器可能在计算上非常昂贵,特别是在需要大量蒙特卡罗样本进行不确定性量化分析的应用中。在诸如计算成像等大规模反问题中,这种成本尤其高昂,因为这些问题依赖于评估成本高昂的大型神经网络。考虑到定量成像应用,本文提出了一种多层蒙特卡罗策略,该策略显著降低了使用扩散模型进行贝叶斯计算的成本。这是通过利用扩散模型固有的成本-精度权衡来精心耦合不同精度水平的模型来实现的,这种方式显著降低了计算的总成本,同时又不降低最终精度。相对于标准技术,所提出的方法在三个基准成像问题上实现了计算成本从[公式:见正文]到[公式:见正文]的降低。本文是主题为“生成建模与贝叶斯推理相遇:反问题的新范式”的一部分。