Suppr超能文献

用于对高速率传感器数据进行贝叶斯推理的深度生成模型:在汽车雷达和医学成像中的应用。

Deep generative models for Bayesian inference on high-rate sensor data: applications in automotive radar and medical imaging.

作者信息

Stevens Tristan S W, Overdevest Jeroen, Nolan Oisín, van Nierop Wessel L, van Sloun Ruud J G, Eldar Yonina C

机构信息

Electrical Engineering, Eindhoven University of Technology, Eindhoven, Noord-Brabant, The Netherlands.

Signal Processing Algorithms, NXP Semiconductors, The Netherlands.

出版信息

Philos Trans A Math Phys Eng Sci. 2025 Jun 19;383(2299):20240327. doi: 10.1098/rsta.2024.0327.

Abstract

Deep generative models (DGMs) have been studied and developed primarily in the context of natural images and computer vision. This has spurred the development of (Bayesian) methods that use these generative models for inverse problems in image restoration, such as denoising, inpainting and super-resolution. In recent years, generative modelling for Bayesian inference on sensory data has also gained traction. Nevertheless, the direct application of generative modelling techniques initially designed for natural images on raw sensory data is not straightforward, requiring solutions that deal with high dynamic range signals (HDR) acquired from multiple sensors or arrays of sensors that interfere with each other, and that typically acquire data at a very high rate. Moreover, the exact physical data-generating process is often complex or unknown. As a consequence, approximate models are used, resulting in discrepancies between model predictions and observations that are non-Gaussian, in turn complicating the Bayesian inverse problem. Finally, sensor data are often used in real-time processing or decision-making systems, imposing stringent requirements on, e.g. latency and throughput. In this article, we discuss some of these challenges and offer approaches to address them, all in the context of high-rate real-time sensing applications in automotive radar and medical imaging.This article is part of the theme issue 'Generative modelling meets Bayesian inference: a new paradigm for inverse problems'.

摘要

深度生成模型(DGMs)主要是在自然图像和计算机视觉的背景下进行研究和开发的。这推动了(贝叶斯)方法的发展,这些方法将这些生成模型用于图像恢复中的逆问题,如图像去噪、图像修复和超分辨率。近年来,用于对感官数据进行贝叶斯推理的生成建模也受到了关注。然而,最初为自然图像设计的生成建模技术直接应用于原始感官数据并非易事,需要解决处理从多个相互干扰的传感器或传感器阵列获取的高动态范围信号(HDR)的问题,并且这些传感器通常以非常高的速率采集数据。此外,确切的物理数据生成过程往往复杂或未知。因此,使用近似模型,导致模型预测与非高斯观测之间存在差异,进而使贝叶斯逆问题复杂化。最后,传感器数据经常用于实时处理或决策系统,对例如延迟和吞吐量提出了严格要求。在本文中,我们将在汽车雷达和医学成像中的高速实时传感应用背景下讨论其中一些挑战,并提供解决这些挑战的方法。本文是主题为“生成建模与贝叶斯推理相遇:逆问题的新范式”的一部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验