Karimi Fariba, Neufeld Esra, Fallahi Arya, Kurtcuoglu Vartan, Kuster Niels
The Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland.
Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.
Front Neuroimaging. 2025 Jun 4;4:1480807. doi: 10.3389/fnimg.2025.1480807. eCollection 2025.
Fourier base fitting for masked or incomplete structured data holds significant importance, for example in biomedical image data processing. However, data incompleteness destroys the simple unitary form of the Fourier transformation, necessitating the construction and solving of a linear system-a task that can suffer from poor conditioning and be computationally expensive. Despite its importance, suitable methodology addressing this challenge is not readily available.
In this study, we propose an efficient and fast Fourier base fitting method suitable for handling masked or incomplete structured data. The developed method can be used for processing multi-dimensional data, including smoothing and intra-/extrapolation, even when confronted with missing data.
The developed method was verified using 1D, 2D, and 3D benchmarks. Its application is demonstrated in the reconstruction of noisy and partially unreliable brain pulsation data in the context of the development of a biomarker for non-invasive craniospinal compliance monitoring and neurological disease diagnostics.
The study investigated the impact of different analytical and numerical performance improvement measures (e.g., term rearrangement, precomputation of recurring functions, vectorization) on computational complexity and speed. Quantitative evaluations on these benchmarks demonstrated that peak reconstruction errors in masked regions remained acceptable (i.e., below 10 % of the data range for all investigated benchmarks), while the proposed computational optimizations reduced matrix assembly time from 843 s to 11 s in 3D cases, demonstrating a 75-fold speed-up compared to unoptimized implementations. Singular value decomposition (SVD) can optionally be employed as part of the solving-step to provide regularization when needed. However, SVD quickly becomes the performance limiting in terms of computational complexity and resource cost, as the number of considered Fourier modes increases.
傅里叶基拟合对于掩码或不完整的结构化数据具有重要意义,例如在生物医学图像数据处理中。然而,数据不完整性破坏了傅里叶变换的简单酉形式,因此需要构建和求解线性系统——这一任务可能存在条件数差和计算成本高的问题。尽管其很重要,但解决这一挑战的合适方法并不容易获得。
在本研究中,我们提出了一种适用于处理掩码或不完整结构化数据的高效快速傅里叶基拟合方法。所开发的方法可用于处理多维数据,包括平滑以及内插/外推,即使面对缺失数据时也能如此。
所开发的方法通过1D、2D和3D基准测试进行了验证。其应用在开发用于无创颅脊髓顺应性监测和神经疾病诊断的生物标志物的背景下,对有噪声且部分不可靠的脑搏动数据的重建中得到了展示。
该研究调查了不同的分析和数值性能改进措施(例如,项重排、循环函数的预计算、向量化)对计算复杂度和速度的影响。对这些基准测试的定量评估表明,掩码区域的峰值重建误差仍可接受(即,对于所有研究的基准测试均低于数据范围的10%),而所提出的计算优化将3D情况下的矩阵组装时间从843秒减少到了11秒,与未优化的实现相比,速度提升了75倍。奇异值分解(SVD)可在求解步骤中选择性地用作一部分,以便在需要时提供正则化。然而,随着所考虑的傅里叶模式数量增加,SVD在计算复杂度和资源成本方面很快成为性能限制因素。