Islam Kh Tohidul, Zhong Shenjun, Zakavi Parisa, Kavnoudias Helen, Farquharson Shawna, Durbridge Gail, Barth Markus, Dwyer Andrew, McMahon Katie L, Parizel Paul M, McIntyre Richard, Egan Gary F, Law Meng, Chen Zhaolin
Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia.
Department of Radiology, The Alfred, Melbourne, VIC, Australia.
Front Neuroimaging. 2025 Jun 4;4:1588487. doi: 10.3389/fnimg.2025.1588487. eCollection 2025.
This study compares volumetric measurements of various brain regions using different magnetic resonance imaging (MRI) modalities and deep learning models, specifically 3T MRI, ultra-low field (ULF) MRI at 64mT, and AI-enhanced ULF MRI using SynthSR and HiLoResGAN. The aim is to evaluate the alignment and agreement among field strengths and ULF MRI with and without AI. Descriptive statistics, paired -tests, effect size analyses, and regression analyses are employed to assess the relationships and differences between modalities. The results indicate that volumetric measurements derived from 64mT MRI deviate significantly from those obtained using 3T MRI. By leveraging SynthSR and LoHiResGAN models, these deviations are reduced, bringing the volumetric estimates closer to those obtained from 3T MRI, which serves as the reference standard for brain volume quantification. These findings highlight that deep learning models can reduce systematic differences in brain volume measurements across field strengths, providing potential solutions to minimize bias in imaging studies.
本研究比较了使用不同磁共振成像(MRI)模式和深度学习模型对各种脑区进行的体积测量,具体包括3T MRI、64mT的超低场(ULF)MRI以及使用SynthSR和HiLoResGAN的人工智能增强ULF MRI。目的是评估不同场强以及有无人工智能辅助的ULF MRI之间的一致性和吻合度。采用描述性统计、配对检验、效应量分析和回归分析来评估不同模式之间的关系和差异。结果表明,64mT MRI得出的体积测量结果与3T MRI获得的结果有显著偏差。通过利用SynthSR和LoHiResGAN模型,这些偏差得以减少,使体积估计值更接近以3T MRI作为脑容量量化参考标准所获得的结果。这些发现突出表明,深度学习模型可以减少不同场强下脑容量测量中的系统差异,为最大限度减少成像研究中的偏差提供了潜在解决方案。