用于预测肺癌致癌驱动分子改变的组织病理学图像深度学习:系统评价与荟萃分析

Deep learning in histopathology images for prediction of oncogenic driver molecular alterations in lung cancer: a systematic review and meta-analysis.

作者信息

Parra-Medina Rafael, Guerron-Gomez Gabriela, Mendivelso-González Daniel, Gil-Gómez Javier Hernan, Alzate Juan Pablo, Gomez-Suarez Marcela, Polo Jose Fernando, Sprockel John Jaime, Mosquera-Zamudio Andres

机构信息

Research Institute, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia.

Department of Pathology, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia.

出版信息

Transl Lung Cancer Res. 2025 May 30;14(5):1756-1769. doi: 10.21037/tlcr-2024-1196. Epub 2025 May 21.

Abstract

BACKGROUND

Lung cancer (LC) is the second most diagnosed cancer and the leading cause of cancer mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for 85% of cases, with oncogenic alterations like , and guiding targeted therapies. Their prevalence varies by ethnicity, smoking status, and gender. Advances in artificial intelligence (AI) enable molecular biomarker prediction from hematoxylin and eosin-stained whole-slide images (H&E WSIs), offering a non-invasive approach to precision oncology. This review assesses deep learning (DL) models predicting oncogenic drivers in NSCLC from H&E WSIs and their diagnostic accuracy.

METHODS

A systematic review registered in PROSPERO (CRD42024573602) was conducted in Embase, LILACS, Medline, Web of Science, and Cochrane to identify studies on DL models using H&E slides for LC gene alterations. Only English and Spanish studies were included. Key metrics were extracted for meta-analysis. Studies without LC-specific data, missing essential metrics, or with inconsistent results were excluded.

RESULTS

We found evidence that convolutional neural networks (CNNs) were the most common architectures in studies. Also, in the meta-analysis, {sensitivity of 84% [95% confidence interval (CI): 62-95%] and specificity of 85% (95% CI: 55-96%)}, [80% (95% CI: 72-86%) and specificity of 77% (95% CI: 69-83%)] and [sensitivity and specificity of 70% (95% CI: 65-83%)] were the oncogenic driver molecular alterations that demonstrated the best predictive capability performance.

CONCLUSIONS

Our results emphasize the potential of these models as screening tools despite H&E WSI.It is necessary to validate these predictive models among diverse populations and clinical outcomes. This approach is crucial and leaves an open door for advances in precision medicine, offering promising avenues for personalized treatment strategies.

摘要

背景

肺癌(LC)是全球第二大常见癌症,也是癌症死亡的主要原因。非小细胞肺癌(NSCLC)占病例的85%,其致癌性改变如 、 和 指导着靶向治疗。它们的患病率因种族、吸烟状况和性别而异。人工智能(AI)的进展使得能够从苏木精和伊红染色的全切片图像(H&E WSI)中预测分子生物标志物,为精准肿瘤学提供了一种非侵入性方法。本综述评估了从H&E WSI预测NSCLC致癌驱动因素的深度学习(DL)模型及其诊断准确性。

方法

在Embase、LILACS,、Medline、Web of Science和Cochrane中进行了一项在PROSPERO注册(CRD42024573602)的系统综述,以识别使用H&E切片进行LC基因改变的DL模型研究。仅纳入英文和西班牙文研究。提取关键指标进行荟萃分析。排除没有LC特异性数据、缺少关键指标或结果不一致的研究。

结果

我们发现有证据表明卷积神经网络(CNN)是研究中最常见的架构。此外,在荟萃分析中,{敏感性为84%[95%置信区间(CI):62 - 95%],特异性为85%(95%CI:55 - 96%)},[80%(95%CI:72 - 86%),特异性为77%(95%CI:69 - 83%)]和[敏感性和特异性为70%(95%CI:65 - 83%)]是显示出最佳预测能力表现的致癌驱动分子改变。

结论

我们的结果强调了尽管有H&E WSI,但这些模型作为筛查工具的潜力。有必要在不同人群和临床结果中验证这些预测模型。这种方法至关重要,为精准医学的进步打开了一扇门,为个性化治疗策略提供了有希望的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aee5/12170222/0f6f396f8fe3/tlcr-14-05-1756-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索