Zhao Yu, Xiong Shan, Ren Qin, Wang Jun, Li Min, Yang Lin, Wu Di, Tang Kejing, Pan Xiaojie, Chen Fengxia, Wang Wenxiang, Jin Shi, Liu Xianling, Lin Gen, Yao Wenxiu, Cai Linbo, Yang Yi, Liu Jixian, Wu Jingxun, Fu Wenfan, Sun Kai, Li Feng, Cheng Bo, Zhan Shuting, Wang Haixuan, Yu Ziwen, Liu Xiwen, Zhong Ran, Wang Huiting, He Ping, Zheng Yongmei, Liang Peng, Chen Longfei, Hou Ting, Huang Junzhou, He Bing, Song Jiangning, Wu Lin, Hu Chengping, He Jianxing, Yao Jianhua, Liang Wenhua
Department of Thoracic Oncology and Surgery, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China; AI Lab, Tencent, Shenzhen, China.
Department of Thoracic Oncology and Surgery, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou, China; Department of Thoracic Oncology and Surgery, Hengqin Hospital, The First Affiliated Hospital of Guangzhou Medical University, Hengqin, China.
Lancet Oncol. 2025 Jan;26(1):136-146. doi: 10.1016/S1470-2045(24)00599-0. Epub 2024 Dec 6.
BACKGROUND: Accurate detection of driver gene mutations is crucial for treatment planning and predicting prognosis for patients with lung cancer. Conventional genomic testing requires high-quality tissue samples and is time-consuming and resource-consuming, and as a result, is not available for most patients, especially those in low-resource settings. We aimed to develop an annotation-free Deep learning-enabled artificial intelligence method to predict GEne Mutations (DeepGEM) from routinely acquired histological slides. METHODS: In this multicentre retrospective study, we collected data for patients with lung cancer who had a biopsy and multigene next-generation sequencing done at 16 hospitals in China (with no restrictions on age, sex, or histology type), to form a large multicentre dataset comprising paired pathological image and multiple gene mutation information. We also included patients from The Cancer Genome Atlas (TCGA) publicly available dataset. Our developed model is an instance-level and bag-level co-supervised multiple instance learning method with label disambiguation design. We trained and initially tested the DeepGEM model on the internal dataset (patients from the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China), and further evaluated it on the external dataset (patients from the remaining 15 centres) and the public TCGA dataset. Additionally, a dataset of patients from the same medical centre as the internal dataset, but without overlap, was used to evaluate the model's generalisation ability to biopsy samples from lymph node metastases. The primary objective was the performance of the DeepGEM model in predicting gene mutations (area under the curve [AUC] and accuracy) in the four prespecified groups (ie, the hold-out internal test set, multicentre external test set, TCGA set, and lymph node metastases set). FINDINGS: Assessable pathological images and multigene testing information were available for 3697 patients who had biopsy and multigene next-generation sequencing done between Jan 1, 2018, and March 31, 2022, at the 16 centres. We excluded 60 patients with low-quality images. We included 3767 images from 3637 consecutive patients (1978 [54·4%] men, 1514 [41·6%] women, 145 [4·0%] unknown; median age 60 years [IQR 52-67]), with 1716 patients in the internal dataset, 1718 patients in the external dataset, and 203 patients in the lymph node metastases dataset. The DeepGEM model showed robust performance in the internal dataset: for excisional biopsy samples, AUC values for gene mutation prediction ranged from 0·90 (95% CI 0·77-1·00) to 0·97 (0·93-1·00) and accuracy values ranged from 0·91 (0·85-0·98) to 0·97 (0·93-1·00); for aspiration biopsy samples, AUC values ranged from 0·85 (0·80-0·91) to 0·95 (0·86-1·00) and accuracy values ranged from 0·79 (0·74-0·85) to 0·99 (0·98-1·00). In the multicentre external dataset, for excisional biopsy samples, AUC values ranged from 0·80 (95% CI 0·75-0·85) to 0·91 (0·88-1·00) and accuracy values ranged from 0·79 (0·76-0·82) to 0·95 (0·93-0·96); for aspiration biopsy samples, AUC values ranged from 0·76 (0·70-0·83) to 0·87 (0·80-0·94) and accuracy values ranged from 0·76 (0·74-0·79) to 0·97 (0·96-0·98). The model also showed strong performance on the TCGA dataset (473 patients; 535 slides; AUC values ranged from 0·82 [95% CI 0·71-0·93] to 0·96 [0·91-1·00], accuracy values ranged from 0·79 [0·70-0·88] to 0·95 [0·90-1·00]). The DeepGEM model, trained on primary region biopsy samples, could be generalised to biopsy samples from lymph node metastases, with AUC values of 0·91 (95% CI 0·88-0·94) for EGFR and 0·88 (0·82-0·93) for KRAS and accuracy values of 0·85 (0·80-0·88) for EGFR and 0·95 (0·92-0·96) for KRAS and showed potential for prognostic prediction of targeted therapy. The model generated spatial gene mutation maps, indicating gene mutation spatial distribution. INTERPRETATION: We developed an AI-based method that can provide an accurate, timely, and economical prediction of gene mutation and mutation spatial distribution. The method showed substantial potential as an assistive tool for guiding the clinical treatment of patients with lung cancer. FUNDING: National Natural Science Foundation of China, the Science and Technology Planning Project of Guangzhou, and the National Key Research and Development Program of China. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.
背景:准确检测驱动基因突变对于肺癌患者的治疗规划和预后预测至关重要。传统的基因组检测需要高质量的组织样本,且耗时耗力,因此大多数患者无法进行,尤其是资源匮乏地区的患者。我们旨在开发一种无需注释的深度学习人工智能方法,从常规获取的组织学切片中预测基因突变(DeepGEM)。
方法:在这项多中心回顾性研究中,我们收集了在中国16家医院接受活检和多基因下一代测序的肺癌患者的数据(对年龄、性别或组织学类型无限制),以形成一个包含配对病理图像和多基因突变信息的大型多中心数据集。我们还纳入了来自癌症基因组图谱(TCGA)公开可用数据集的患者。我们开发的模型是一种具有标签消歧设计的实例级和包级联合监督多实例学习方法。我们在内部数据集(来自中国广州医科大学附属第一医院的患者)上训练并初步测试了DeepGEM模型,并在外部数据集(来自其余15个中心的患者)和公共TCGA数据集上进一步评估了该模型。此外,使用来自与内部数据集相同医疗中心但无重叠的患者数据集来评估模型对淋巴结转移活检样本的泛化能力。主要目标是DeepGEM模型在四个预先指定组(即留出的内部测试集、多中心外部测试集、TCGA集和淋巴结转移集)中预测基因突变的性能(曲线下面积[AUC]和准确性)。
结果:在16个中心,共有3697例在2018年1月1日至2022年3月31日期间接受活检和多基因下一代测序的患者可获得可评估的病理图像和多基因检测信息。我们排除了60例图像质量低的患者。我们纳入了来自3637例连续患者的3767张图像(1978例[54.4%]男性,1514例[41.6%]女性,145例[4.0%]未知;中位年龄60岁[IQR 52 - 67]),其中内部数据集有1716例患者,外部数据集有1718例患者,淋巴结转移数据集有203例患者。DeepGEM模型在内部数据集上表现出强大的性能:对于切除活检样本,基因突变预测的AUC值范围为0.90(95%CI 0.77 - 1.00)至0.97(0.93 - 1.00),准确性值范围为0.91(0.85 - 0.98)至0.97(0.93 - 1.00);对于穿刺活检样本,AUC值范围为0.85(0.80 - 0.91)至0.95(0.86 - 1.00),准确性值范围为0.79(0.74 - 0.85)至0.99(0.98 - 1.00)。在多中心外部数据集中,对于切除活检样本,AUC值范围为0.80(95%CI 0.75 - 0.85)至0.91(0.88 - 1.00),准确性值范围为0.79(0.76 - 0.82)至0.95(0.93 - 0.96);对于穿刺活检样本,AUC值范围为0.76(0.70 - 0.83)至0.87(0.80 - 0.94),准确性值范围为0.76(0.74 - 0.79)至0.97(0.96 - 0.98)。该模型在TCGA数据集(473例患者;535张切片)上也表现出强大的性能(AUC值范围为0.82[95%CI 0.71 - 0.93]至0.96[0.91 - 1.00],准确性值范围为0.79[0.70 - 0.88]至0.95[0.90 - 1.00])。在原发区域活检样本上训练的DeepGEM模型可以推广到淋巴结转移的活检样本,EGFR的AUC值为0.91(95%CI 0.88 - 0.94),KRAS的AUC值为0.88(0.82 - 0.93),EGFR的准确性值为0.85(0.80 - 0.88),KRAS的准确性值为0.95(0.92 - 0.96),显示出靶向治疗预后预测的潜力。该模型生成了空间基因突变图谱,表明了基因突变的空间分布。
解读:我们开发了一种基于人工智能的方法,该方法可以准确、及时且经济地预测基因突变和突变空间分布。该方法作为指导肺癌患者临床治疗的辅助工具具有巨大潜力。
资金来源:中国国家自然科学基金、广州科技计划项目和中国国家重点研发计划。
中文翻译摘要见补充材料部分。
NPJ Precis Oncol. 2025-7-30
Front Med (Lausanne). 2025-4-8
Nat Rev Clin Oncol. 2025-4