Suppr超能文献

迈向生成对常见干扰具有鲁棒性的医学影像分类器。

Towards the Generation of Medical Imaging Classifiers Robust to Common Perturbations.

作者信息

Chuah Joshua, Yan Pingkun, Wang Ge, Hahn Juergen

机构信息

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

出版信息

BioMedInformatics. 2024 Jun;4(2):889-910. doi: 10.3390/biomedinformatics4020050. Epub 2024 Apr 1.

Abstract

BACKGROUND

Machine learning (ML) and artificial intelligence (AI)-based classifiers can be used to diagnose diseases from medical imaging data. However, few of the classifiers proposed in the literature translate to clinical use because of robustness concerns.

MATERIALS AND METHODS

This study investigates how to improve the robustness of AI/ML imaging classifiers by simultaneously applying perturbations of common effects (Gaussian noise, contrast, blur, rotation, and tilt) to different amounts of training and test images. Furthermore, a comparison with classifiers trained with adversarial noise is also presented. This procedure is illustrated using two publicly available datasets, the PneumoniaMNIST dataset and the Breast Ultrasound Images dataset (BUSI dataset).

RESULTS

Classifiers trained with small amounts of perturbed training images showed similar performance on unperturbed test images compared to the classifier trained with no perturbations. Additionally, classifiers trained with perturbed data performed significantly better on test data both perturbed by a single perturbation (-values: noise = 0.0186; contrast = 0.0420; rotation, tilt, and blur = 0.000977) and multiple perturbations (-values: PneumoniaMNIST = 0.000977; BUSI = 0.00684) than the classifier trained with unperturbed data.

CONCLUSIONS

Classifiers trained with perturbed data were found to be more robust to perturbed test data than the unperturbed classifier without exhibiting a performance decrease on unperturbed test images, indicating benefits to training with data that include some perturbed images and no significant downsides.

摘要

背景

基于机器学习(ML)和人工智能(AI)的分类器可用于从医学影像数据中诊断疾病。然而,由于对稳健性的担忧,文献中提出的分类器很少能转化为临床应用。

材料与方法

本研究探讨如何通过同时对不同数量的训练和测试图像施加常见效应的扰动(高斯噪声、对比度、模糊、旋转和倾斜)来提高AI/ML影像分类器的稳健性。此外,还将与使用对抗性噪声训练的分类器进行比较。使用两个公开可用的数据集,即肺炎MNIST数据集和乳腺超声图像数据集(BUSI数据集)来说明这一过程。

结果

与未进行扰动训练的分类器相比,使用少量扰动训练图像训练的分类器在未扰动的测试图像上表现出相似的性能。此外,使用扰动数据训练的分类器在受到单一扰动(-值:噪声 = 0.0186;对比度 = 0.0420;旋转、倾斜和模糊 = 0.000977)和多种扰动(-值:肺炎MNIST = 0.000977;BUSI = 0.00684)的测试数据上的表现明显优于使用未扰动数据训练的分类器。

结论

发现使用扰动数据训练的分类器对扰动测试数据的稳健性高于未扰动的分类器,且在未扰动的测试图像上性能没有下降,这表明使用包含一些扰动图像的数据进行训练有好处且没有明显弊端。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fdd/12176414/6dcbe1c7344b/nihms-2085300-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验