Chen Hao, Rubenstein Dustin R, Mai Guan-Shuo, Chang Chung-Fan, Shen Sheng-Feng
Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan.
Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei City, Taiwan.
R Soc Open Sci. 2025 Jun 18;12(6):250624. doi: 10.1098/rsos.250624. eCollection 2025 Jun.
Climate change continues to alter breeding phenology in a range of plant and animal species across the globe. Traditional methods for assessing when organisms reproduce often rely on time-intensive field observations or destructive sampling, creating an urgent need for efficient, non-invasive approaches to assess reproductive timing. Here, we examined three populations of the Asian burying beetle from subtropical Okinawa, Japan (500 m) and Taiwan (1100-3200 m) that were reared under contrasting photoperiods in order to develop a predictive framework linking circadian activity to breeding phenology. Using automated activity monitors, we quantified adult circadian rhythms and used machine learning to predict breeding phenology (seasonal versus year-round breeding) from behaviour alone. Our model achieved 95% accuracy under long-day conditions using just three behavioural features. Notably, it maintained 76% accuracy under short-day conditions when both types are reproductively active, revealing persistent behavioural differences between breeding strategies. These results demonstrate how integrating behavioural monitoring with machine learning can provide a rapid, scalable method for tracking population responses to climate change. This approach also offers novel insights into species' adaptive responses to shifting seasonal cues across different elevational gradients in the beetles' native range.
气候变化持续改变全球一系列动植物物种的繁殖物候。评估生物体繁殖时间的传统方法通常依赖耗时的实地观察或破坏性采样,因此迫切需要高效、非侵入性的方法来评估繁殖时间。在此,我们研究了来自日本亚热带冲绳(500米)和台湾(1100 - 3200米)的三个亚洲埋葬甲虫种群,它们在不同的光周期条件下饲养,以建立一个将昼夜活动与繁殖物候联系起来的预测框架。我们使用自动活动监测器量化成年甲虫的昼夜节律,并仅通过行为利用机器学习预测繁殖物候(季节性繁殖与全年繁殖)。我们的模型在长日照条件下仅使用三个行为特征就达到了95%的准确率。值得注意的是,在短日照条件下,当两种繁殖策略的甲虫都具有繁殖活性时,模型仍保持76%的准确率,这揭示了不同繁殖策略之间持续存在的行为差异。这些结果表明,将行为监测与机器学习相结合如何能够提供一种快速、可扩展的方法来跟踪种群对气候变化的反应。这种方法还为甲虫原生范围内不同海拔梯度上物种对季节性线索变化的适应性反应提供了新的见解。