Suppr超能文献

采用桥接结构构建固态锂氧电池的有机-无机界面

Crafting the Organic-Inorganic Interface with a Bridging Architecture for Solid-State Li-O Batteries.

作者信息

Li Minghui, Pan Kecheng, Huang Dulin, Wu Jing, Li Zhenzhen, Dou Yaying, Zhang Zhang, Zhou Zhen

机构信息

Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.

出版信息

Adv Sci (Weinh). 2025 Aug;12(30):e03664. doi: 10.1002/advs.202503664. Epub 2025 Jun 19.

Abstract

Solid-state lithium-oxygen batteries (SSLOBs) are offering unparalleled safety and exceptional electrochemical performance. Despite their promise, composite solid electrolytes (CSEs) fabricated through mechanical hybridization consistently manifest pronounced ceramic particle aggregation. In this study, a thin and flexible CSE is developed by integrating LiGePS (LGPS) with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and implementing silane coupling agents to form a bridging framework across the organic-inorganic heterojunction interfaces. The engineered CSE exhibited remarkable room-temperature ionic conductivity reaching 1.05 × 10 S cm, superior electrochemical stability within an expanded voltage window extending to 4.9 V versus Li/Li. Furthermore, lithium symmetrical cells revealed uniform lithium deposition/dissolution behavior over 3000 h. Integration of the thin-film CSE into SSLOBs yielded devices achieving specific discharge capacities of 12874 mAh g, coupled with superior long-term operational stability throughout 120 cycles. The enhanced interfacial adhesion forces observed between the heterogeneous phases play a pivotal role in maintaining space charge region stability, subsequently promoting accelerated lithium-ion diffusion kinetics while optimizing charge transfer processes at the electrochemical interfaces. The systematic study presents an innovative synthetic strategy for engineering dimensionally-confined, sulfide-enriched CSEs.

摘要

固态锂氧电池(SSLOBs)具有无与伦比的安全性和卓越的电化学性能。尽管前景广阔,但通过机械混合制备的复合固体电解质(CSEs)始终表现出明显的陶瓷颗粒聚集现象。在本研究中,通过将LiGePS(LGPS)与聚(偏二氟乙烯 - 共 - 六氟丙烯)(PVDF - HFP)集成,并使用硅烷偶联剂在有机 - 无机异质结界面形成桥接框架,开发出一种薄且柔性的CSE。所设计的CSE在室温下表现出显著的离子电导率,达到1.05×10 S cm,在扩展至4.9 V(相对于Li/Li)的电压窗口内具有优异的电化学稳定性。此外,锂对称电池在3000小时内显示出均匀的锂沉积/溶解行为。将薄膜CSE集成到SSLOBs中,得到的器件比放电容量达到12874 mAh g,并且在120个循环中具有优异的长期运行稳定性。在异质相之间观察到的增强的界面附着力在维持空间电荷区稳定性方面起着关键作用,随后促进了加速的锂离子扩散动力学,同时优化了电化学界面处的电荷转移过程。该系统研究提出了一种创新的合成策略,用于设计尺寸受限、富含硫化物的CSEs。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验