Suppr超能文献

使用非增强CT的人工智能驱动的放射组学模型在慢性胰腺炎自动严重程度分级中的开发与验证

Development and validation of an AI-driven radiomics model using non-enhanced CT for automated severity grading in chronic pancreatitis.

作者信息

Chen Chengwei, Zhou Jian, Mo Shaojia, Li Jing, Fang Xu, Liu Fang, Wang Tiegong, Wang Li, Lu Jianping, Shao Chengwei, Bian Yun

机构信息

Department of Radiology, Changhai Hospital, Shanghai, China.

出版信息

Eur Radiol. 2025 Jun 19. doi: 10.1007/s00330-025-11776-x.

Abstract

OBJECTIVE

To develop and validate the chronic pancreatitis CT severity model (CATS), an artificial intelligence (AI)-based tool leveraging automated 3D segmentation and radiomics analysis of non-enhanced CT scans for objective severity stratification in chronic pancreatitis (CP).

MATERIALS AND METHODS

This retrospective study encompassed patients with recurrent acute pancreatitis (RAP) and CP from June 2016 to May 2020. A 3D convolutional neural network segmented non-enhanced CT scans, extracting 1843 radiomic features to calculate the radiomics score (Rad-score). The CATS was formulated using multivariable logistic regression and validated in a subsequent cohort from June 2020 to April 2023.

RESULTS

Overall, 2054 patients with RAP and CP were included in the training (n = 927), validation set (n = 616), and external test (n = 511) sets. CP grade I and II patients accounted for 300 (14.61%) and 1754 (85.39%), respectively. The Rad-score significantly correlated with the acinus-to-stroma ratio (p = 0.023; OR, -2.44). The CATS model demonstrated high discriminatory performance in differentiating CP severity grades, achieving an area under the curve (AUC) of 0.96 (95% CI: 0.94-0.98) and 0.88 (95% CI: 0.81-0.90) in the validation and test cohorts. CATS-predicted grades correlated with exocrine insufficiency (all p < 0.05) and showed significant prognostic differences (all p < 0.05). CATS outperformed radiologists in detecting calcifications, identifying all minute calcifications missed by radiologists.

CONCLUSION

The CATS, developed using non-enhanced CT and AI, accurately predicts CP severity, reflects disease morphology, and forecasts short- to medium-term prognosis, offering a significant advancement in CP management.

KEY POINTS

Question Existing CP severity assessments rely on semi-quantitative CT evaluations and multi-modality imaging, leading to inconsistency and inaccuracy in early diagnosis and prognosis prediction. Findings The AI-driven CATS model, using non-enhanced CT, achieved high accuracy in grading CP severity, and correlated with histopathological fibrosis markers. Clinical relevance CATS provides a cost-effective, widely accessible tool for precise CP severity stratification, enabling early intervention, personalized management, and improved outcomes without contrast agents or invasive biopsies.

摘要

目的

开发并验证慢性胰腺炎CT严重程度模型(CATS),这是一种基于人工智能(AI)的工具,利用非增强CT扫描的自动三维分割和放射组学分析对慢性胰腺炎(CP)进行客观严重程度分层。

材料与方法

这项回顾性研究纳入了2016年6月至2020年5月期间患有复发性急性胰腺炎(RAP)和CP的患者。一个三维卷积神经网络对非增强CT扫描进行分割,提取1843个放射组学特征以计算放射组学评分(Rad评分)。CATS通过多变量逻辑回归制定,并在2020年6月至2023年4月的后续队列中进行验证。

结果

总体而言,2054例RAP和CP患者被纳入训练集(n = 927)、验证集(n = 616)和外部测试集(n = 511)。CP I级和II级患者分别占300例(14.61%)和1754例(85.39%)。Rad评分与腺泡与基质比值显著相关(p = 0.023;OR,-2.44)。CATS模型在区分CP严重程度等级方面表现出高辨别性能,在验证队列和测试队列中的曲线下面积(AUC)分别为0.96(95%CI:0.94 - 0.98)和0.88(95%CI:0.81 - 0.90)。CATS预测的等级与外分泌功能不全相关(所有p < 0.05),并显示出显著的预后差异(所有p < 0.05)。在检测钙化方面,CATS优于放射科医生,能识别放射科医生遗漏的所有微小钙化。

结论

使用非增强CT和AI开发的CATS能准确预测CP严重程度,反映疾病形态,并预测短期至中期预后,为CP的管理带来了重大进展。

要点

问题现有的CP严重程度评估依赖于半定量CT评估和多模态成像,导致早期诊断和预后预测不一致且不准确。发现由AI驱动的CATS模型使用非增强CT在CP严重程度分级方面具有高精度,并与组织病理学纤维化标志物相关。临床意义CATS为精确的CP严重程度分层提供了一种经济高效、广泛可用的工具,无需使用造影剂或进行侵入性活检即可实现早期干预、个性化管理并改善预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验