Suppr超能文献

利用放射组学模型通过PSMA PET/CT研究预测前列腺外侵犯:与Mehralivand分级系统的比较研究

Using radiomics model for predicting extraprostatic extension with PSMA PET/CT studies: a comparative study with the Mehralivand grading system.

作者信息

Bian Linjie, Liu Fanxuan, Peng Yige, Liu Xinyu, Li Panli, Liu Qiufang, Bi Lei, Song Shaoli

机构信息

Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.

Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.

出版信息

Cancer Imaging. 2025 Jun 18;25(1):77. doi: 10.1186/s40644-025-00894-w.

Abstract

PURPOSE

This study aimed to evaluate the effectiveness of using a radiomics model to predict extraprostatic extension (EPE) in prostate cancer from PSMA PET/CT, and to directly compare its performance with the Mehralivand Grading System, an MRI-based method for EPE assessment.

METHODS

A total of 206 patients who underwent radical prostatectomy were included in this study. Radiomics features were extracted from PSMA PET/CT images to construct predictive models using Support Vector Machine (SVM) and Random Forest algorithms. In addition, among the 63 patients who underwent both PSMA PET/CT and multiparametric MRI (mpMRI), the performance of the radiomics model was compared with that of the Mehralivand Grading System. Key performance metrics, including the area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), were reported.

RESULTS

Among the 63 patients who underwent both PSMA PET/CT and multiparametric MRI (mpMRI), the radiomics model achieved an AUC of 76.8% (95% CI: 64.4-86.5%), sensitivity of 72.0%, specificity of 81.5%, PPV of 72.0%, and NPV of 81.6%. In comparison, the Mehralivand Grading System yielded AUCs of 66.8%, 63.5%, and 60.2% from three independent readers. DeLong's test showed that the radiomics model significantly outperformed all three readers in terms of AUC (p = 0.013, 0.003, and 0.001, respectively).

CONCLUSION

The radiomics model derived from PSMA PET/CT can better capture features associated with EPE and shows promise for aiding preoperative assessment in prostate cancer. However, further validation in larger, independent cohorts is necessary to confirm its stability and clinical utility.

摘要

目的

本研究旨在评估使用放射组学模型从前列腺特异性膜抗原(PSMA)正电子发射断层扫描/计算机断层扫描(PET/CT)预测前列腺癌前列腺外侵犯(EPE)的有效性,并将其性能与基于磁共振成像(MRI)的EPE评估方法Mehralivand分级系统直接进行比较。

方法

本研究共纳入206例行根治性前列腺切除术的患者。从PSMA PET/CT图像中提取放射组学特征,使用支持向量机(SVM)和随机森林算法构建预测模型。此外,在63例同时接受PSMA PET/CT和多参数MRI(mpMRI)检查的患者中,将放射组学模型的性能与Mehralivand分级系统的性能进行比较。报告了关键性能指标,包括曲线下面积(AUC)、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)。

结果

在63例同时接受PSMA PET/CT和mpMRI检查的患者中,放射组学模型的AUC为76.8%(95%置信区间:64.4 - 86.5%),敏感性为72.0%,特异性为81.5%,PPV为72.0%,NPV为81.6%。相比之下,三位独立阅片者使用Mehralivand分级系统得出的AUC分别为66.8%、63.5%和60.2%。DeLong检验表明,放射组学模型在AUC方面显著优于所有三位阅片者(p值分别为0.013、0.003和0.001)。

结论

源自PSMA PET/CT 的放射组学模型能够更好地捕捉与EPE相关的特征,显示出有助于前列腺癌术前评估的前景。然而,需要在更大的独立队列中进行进一步验证,以确认其稳定性和临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf7c/12177976/99c3a70bddd1/40644_2025_894_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验