Nassar Joseph E, Farias Michael J, Ammar Lama A, Rasquinha Rhea, Xu Andrew Y, Singh Manjot, Alsoof Daniel, Diebo Bassel G, Daniels Alan H
Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island.
J Bone Joint Surg Am. 2025 Jun 19. doi: 10.2106/JBJS.24.01484.
Patient-education materials (PEMs) are essential to improve health literacy, engagement, and treatment adherence, yet many exceed the recommended readability levels. Therefore, individuals with limited health literacy are at a disadvantage. This study evaluated the readability of spine-related PEMs from the American Academy of Orthopaedic Surgeons (AAOS), the North American Spine Society (NASS), and the American Association of Neurological Surgeons (AANS), and examined the potential of artificial intelligence (AI) in optimizing PEMs for improved patient comprehension.
A total of 146 spine-related PEMs from the AAOS, NASS, and AANS websites were analyzed. Readability was assessed using the Flesch-Kincaid Grade Level (FKGL) and Simple Measure of Gobbledygook (SMOG) Index scores, as well as other metrics, including language complexity and use of the passive voice. ChatGPT-4o was used to revise the PEMs to a sixth-grade reading level, and post-revision readability was assessed. Test-retest reliability was evaluated, and paired t tests were used to compare the readability scores of the original and AI-modified PEMs.
The original PEMs had a mean FKGL of 10.2 ± 2.6, which significantly exceeded both the recommended sixth-grade reading level and the average U.S. eighth-grade reading level (p < 0.05). ChatGPT-4o generated articles with a significantly reduced mean FKGL of 6.6 ± 1.3 (p < 0.05). ChatGPT-4o also improved other readability metrics, including the SMOG Index score, language complexity, and use of the passive voice, while maintaining accuracy and adequate detail. Excellent test-retest reliability was observed across all of the metrics (intraclass correlation coefficient [ICC] range, 0.91 to 0.98).
Spine-related PEMs from the AAOS, the NASS, and the AANS remain excessively complex, despite minor improvements to readability over the years. ChatGPT-4o demonstrated the potential to enhance PEM readability while maintaining content quality. Future efforts should integrate AI tools with visual aids and user-friendly platforms to create inclusive and comprehensible PEMs to address diverse patient needs and improve health-care delivery.
患者教育材料(PEMs)对于提高健康素养、参与度和治疗依从性至关重要,但许多材料超出了推荐的可读性水平。因此,健康素养有限的个体处于劣势。本研究评估了美国矫形外科医师学会(AAOS)、北美脊柱协会(NASS)和美国神经外科医师协会(AANS)提供的脊柱相关PEMs的可读性,并探讨了人工智能(AI)在优化PEMs以提高患者理解度方面的潜力。
对AAOS、NASS和AANS网站上总共146份脊柱相关PEMs进行了分析。使用弗莱施-金凯德年级水平(FKGL)和简化的晦涩难懂度量表(SMOG)指数得分以及其他指标(包括语言复杂性和被动语态的使用)评估可读性。使用ChatGPT-4o将PEMs修订至六年级阅读水平,并评估修订后的可读性。评估了重测信度,并使用配对t检验比较原始PEMs和人工智能修改后的PEMs的可读性得分。
原始PEMs的平均FKGL为10.2±2.6,显著超过了推荐的六年级阅读水平和美国八年级平均阅读水平(p<0.05)。ChatGPT-4o生成的文章平均FKGL显著降低至6.6±1.3(p<0.05)。ChatGPT-4o还改善了其他可读性指标,包括SMOG指数得分、语言复杂性和被动语态的使用,同时保持了准确性和足够的细节。在所有指标上均观察到了出色的重测信度(组内相关系数[ICC]范围为0.91至0.98)。
尽管多年来在可读性方面有小幅改善,但AAOS、NASS和AANS提供的脊柱相关PEMs仍然过于复杂。ChatGPT-4o显示出在保持内容质量的同时提高PEMs可读性的潜力。未来的工作应将人工智能工具与视觉辅助工具和用户友好平台相结合,以创建包容性强且易于理解的PEMs,满足不同患者的需求并改善医疗服务的提供。