Serrano-Quílez Joan, Tejada-Colón Ana, Nuño-Cabanes Carme, Rodríguez-Navarro Susana
Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC). Jaume Roig, 11, 46010, Valencia, Spain.
G3 (Bethesda). 2025 Jun 19. doi: 10.1093/g3journal/jkaf144.
Cells must rapidly adapt to environmental fluctuations, including heat stress, to maintain homeostasis and ensure survival. A key adaptive mechanism is transcriptional memory, which enables cells to "remember" prior stress exposure and mount a faster or more controlled transcriptional response upon re-exposure. However, the molecular mechanisms underlying transcriptional memory in the heat shock response (HSR) remain incompletely understood. Here, we investigate the role of the RNA-binding protein Mip6 in regulating transcriptional memory during heat stress in Saccharomyces cerevisiae. Using qRT-PCR and RNA-seq, we demonstrate that prior heat shock exposure dampens the activation of heat-responsive genes upon a second stress, a phenomenon more pronounced in mip6Δ mutants. Our transcriptomic analyses reveal that transcriptional memory predominantly suppresses excessive gene expression changes, fine-tuning stress responses. Moreover, we identify a functional and physical interaction between Mip6 and the histone deacetylase Rpd3, a key regulator of transcriptional memory. Loss of both Mip6 and Rpd3 results in synthetic growth defects under heat stress and misregulation of Msn2/4-dependent transcripts, implicating Mip6 as a novel player in the coordination of chromatin and RNA-binding mechanisms during transcriptional memory. Additionally, we show that transcriptional memory modulates metabolic homeostasis and proteostasis. Collectively, our findings implicate Mip6 in the coordination of transcriptional memory in the HSR and reveal a novel link between the RNA-binding protein Mip6 and the chromatin modifier Rpd3 HDAC in stress adaptation. These insights provide a foundation for further exploration of transcriptional memory mechanisms across diverse stress conditions.
细胞必须迅速适应包括热应激在内的环境波动,以维持体内平衡并确保生存。一种关键的适应性机制是转录记忆,它使细胞能够“记住”先前的应激暴露,并在再次暴露时产生更快或更可控的转录反应。然而,热休克反应(HSR)中转录记忆的分子机制仍未完全了解。在这里,我们研究了RNA结合蛋白Mip6在酿酒酵母热应激期间调节转录记忆中的作用。使用qRT-PCR和RNA-seq,我们证明先前的热休克暴露会减弱第二次应激时热响应基因的激活,这种现象在mip6Δ突变体中更为明显。我们的转录组分析表明,转录记忆主要抑制过度的基因表达变化,微调应激反应。此外,我们确定了Mip6与组蛋白脱乙酰酶Rpd3之间的功能和物理相互作用,Rpd3是转录记忆的关键调节因子。Mip6和Rpd3的缺失都会导致热应激下的合成生长缺陷以及Msn2/4依赖性转录本的失调,这表明Mip6是转录记忆过程中染色质和RNA结合机制协调中的一个新参与者。此外,我们表明转录记忆调节代谢稳态和蛋白质稳态。总的来说,我们的研究结果表明Mip6参与了HSR中转录记忆的协调,并揭示了RNA结合蛋白Mip6与染色质修饰剂Rpd3 HDAC在应激适应中的新联系。这些见解为进一步探索不同应激条件下的转录记忆机制奠定了基础。