文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

康复时间对卒中后活动受限和功能障碍的影响。

The effect of time spent in rehabilitation on activity limitation and impairment after stroke.

机构信息

School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.

Department of Physical Therapy and Rehabilitation Science, University of Maryland, Baltimore, Maryland, USA.

出版信息

Cochrane Database Syst Rev. 2021 Oct 25;10(10):CD012612. doi: 10.1002/14651858.CD012612.pub2.


DOI:10.1002/14651858.CD012612.pub2
PMID:34695300
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8545241/
Abstract

BACKGROUND: Stroke affects millions of people every year and is a leading cause of disability, resulting in significant financial cost and reduction in quality of life. Rehabilitation after stroke aims to reduce disability by facilitating recovery of impairment, activity, or participation. One aspect of stroke rehabilitation that may affect outcomes is the amount of time spent in rehabilitation, including minutes provided, frequency (i.e. days per week of rehabilitation), and duration (i.e. time period over which rehabilitation is provided). Effect of time spent in rehabilitation after stroke has been explored extensively in the literature, but findings are inconsistent. Previous systematic reviews with meta-analyses have included studies that differ not only in the amount provided, but also type of rehabilitation. OBJECTIVES: To assess the effect of 1. more time spent in the same type of rehabilitation on activity measures in people with stroke; 2. difference in total rehabilitation time (in minutes) on recovery of activity in people with stroke; and 3. rehabilitation schedule on activity in terms of: a. average time (minutes) per week undergoing rehabilitation, b. frequency (number of sessions per week) of rehabilitation, and c. total duration of rehabilitation. SEARCH METHODS: We searched the Cochrane Stroke Group trials register, CENTRAL, MEDLINE, Embase, eight other databases, and five trials registers to June 2021. We searched reference lists of identified studies, contacted key authors, and undertook reference searching using Web of Science Cited Reference Search. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of adults with stroke that compared different amounts of time spent, greater than zero, in rehabilitation (any non-pharmacological, non-surgical intervention aimed to improve activity after stroke). Studies varied only in the amount of time in rehabilitation between experimental and control conditions. Primary outcome was activities of daily living (ADLs); secondary outcomes were activity measures of upper and lower limbs, motor impairment measures of upper and lower limbs, and serious adverse events (SAE)/death. DATA COLLECTION AND ANALYSIS: Two review authors independently screened studies, extracted data, assessed methodological quality using the Cochrane RoB 2 tool, and assessed certainty of the evidence using GRADE. For continuous outcomes using different scales, we calculated pooled standardised mean difference (SMDs) and 95% confidence intervals (CIs). We expressed dichotomous outcomes as risk ratios (RR) with 95% CIs. MAIN RESULTS: The quantitative synthesis of this review comprised 21 parallel RCTs, involving analysed data from 1412 participants.  Time in rehabilitation varied between studies. Minutes provided per week were 90 to 1288. Days per week of rehabilitation were three to seven. Duration of rehabilitation was two weeks to six months. Thirteen studies provided upper limb rehabilitation, five general rehabilitation, two mobilisation training, and one lower limb training. Sixteen studies examined participants in the first six months following stroke; the remaining five included participants more than six months poststroke. Comparison of stroke severity or level of impairment was limited due to variations in measurement. The risk of bias assessment suggests there were issues with the methodological quality of the included studies. There were 76 outcome-level risk of bias assessments: 15 low risk, 37 some concerns, and 24 high risk. When comparing groups that spent more time versus less time in rehabilitation immediately after intervention, we found no difference in rehabilitation for ADL outcomes (SMD 0.13, 95% CI -0.02 to 0.28; P = 0.09; I = 7%; 14 studies, 864 participants; very low-certainty evidence), activity measures of the upper limb (SMD 0.09, 95% CI -0.11 to 0.29; P = 0.36; I = 0%; 12 studies, 426 participants; very low-certainty evidence), and activity measures of the lower limb (SMD 0.25, 95% CI -0.03 to 0.53; P = 0.08; I = 48%; 5 studies, 425 participants; very low-certainty evidence). We found an effect in favour of more time in rehabilitation for motor impairment measures of the upper limb (SMD 0.32, 95% CI 0.06 to 0.58; P = 0.01; I = 10%; 9 studies, 287 participants; low-certainty evidence) and of the lower limb (SMD 0.71, 95% CI 0.15 to 1.28; P = 0.01; 1 study, 51 participants; very low-certainty evidence). There were no intervention-related SAEs. More time in rehabilitation did not affect the risk of SAEs/death (RR 1.20, 95% CI 0.51 to 2.85; P = 0.68; I = 0%; 2 studies, 379 participants; low-certainty evidence), but few studies measured these outcomes. Predefined subgroup analyses comparing studies with a larger difference of total time spent in rehabilitation between intervention groups to studies with a smaller difference found greater improvements for studies with a larger difference. This was statistically significant for ADL outcomes (P = 0.02) and activity measures of the upper limb (P = 0.04), but not for activity measures of the lower limb (P = 0.41) or motor impairment measures of the upper limb (P = 0.06). AUTHORS' CONCLUSIONS: An increase in time spent in the same type of rehabilitation after stroke results in little to no difference in meaningful activities such as activities of daily living and activities of the upper and lower limb but a small benefit in measures of motor impairment (low- to very low-certainty evidence for all findings). If the increase in time spent in rehabilitation exceeds a threshold, this may lead to improved outcomes. There is currently insufficient evidence to recommend a minimum beneficial daily amount in clinical practice. The findings of this study are limited by a lack of studies with a significant contrast in amount of additional rehabilitation provided between control and intervention groups. Large, well-designed, high-quality RCTs that measure time spent in all rehabilitation activities (not just interventional) and provide a large contrast (minimum of 1000 minutes) in amount of rehabilitation between groups would provide further evidence for effect of time spent in rehabilitation.

摘要

背景:每年有数百万人受到中风的影响,中风是导致残疾的主要原因之一,这会造成巨大的经济成本和生活质量下降。中风后的康复旨在通过促进功能障碍、活动或参与的恢复来减少残疾。中风康复的一个方面可能会影响结果,即康复的时间,包括提供的分钟数、频率(即每周康复的天数)和持续时间(即提供康复的时间段)。中风后康复时间的影响在文献中已经进行了广泛的探索,但研究结果不一致。以前的系统评价和荟萃分析包括不仅在提供量方面而且在康复类型方面存在差异的研究。

目的:评估以下三个方面的影响:1. 相同类型的康复时间增加对中风患者活动测量的影响;2. 中风患者活动恢复中总康复时间(分钟)的差异;3. 康复计划在以下方面对活动的影响:a. 每周接受康复治疗的平均时间(分钟),b. 康复的频率(每周治疗次数),c. 康复的总持续时间。

检索方法:我们检索了 Cochrane 中风组试验注册库、CENTRAL、MEDLINE、Embase、其他八个数据库和五个试验注册库,检索时间截至 2021 年 6 月。我们检索了已确定研究的参考文献列表,联系了主要作者,并使用 Web of Science 被引参考文献搜索进行了参考文献搜索。

选择标准:我们纳入了随机对照试验(RCT),这些试验纳入了年龄在中风后接受不同时间(任何非药物、非手术干预,旨在改善中风后的活动)的康复的成年人。研究之间仅在实验组和对照组之间的康复时间上存在差异。主要结局是日常生活活动(ADL);次要结局是上肢和下肢活动测量、上肢和下肢运动障碍测量以及严重不良事件(SAE)/死亡。

数据收集和分析:两名综述作者独立筛选研究、提取数据,使用 Cochrane RoB 2 工具评估方法学质量,并使用 GRADE 评估证据确定性。对于使用不同量表的连续结局,我们计算了标准化均数差(SMD)和 95%置信区间(CI)。我们将二分类结局表示为风险比(RR)和 95%CI。

主要结果:本综述的定量综合包括 21 项平行 RCT,涉及 1412 名参与者的分析数据。康复时间在研究之间有所不同。每周提供的分钟数为 90 至 1288 分钟。每周康复的天数为 3 至 7 天。康复持续时间为两周至六个月。13 项研究提供上肢康复,5 项研究提供一般康复,2 项研究提供动员训练,1 项研究提供下肢训练。16 项研究在中风后 6 个月内观察参与者,其余 5 项研究包括中风后 6 个月以上的参与者。由于测量方法的差异,比较中风严重程度或损伤程度的风险存在限制。纳入研究的方法学质量的偏倚评估表明存在问题。有 76 项结局水平的偏倚风险评估:15 项低风险,37 项部分关注,24 项高风险。当比较接受更多或更少康复时间的组时,我们发现干预后立即在 ADL 结局方面的康复没有差异(SMD 0.13,95%CI-0.02 至 0.28;P=0.09;I=7%;14 项研究,864 名参与者;非常低确定性证据)、上肢活动测量(SMD 0.09,95%CI-0.11 至 0.29;P=0.36;I=0%;12 项研究,426 名参与者;非常低确定性证据)和下肢活动测量(SMD 0.25,95%CI-0.03 至 0.53;P=0.08;I=48%;5 项研究,425 名参与者;非常低确定性证据)。我们发现,上肢运动障碍测量(SMD 0.32,95%CI 0.06 至 0.58;P=0.01;I=10%;9 项研究,287 名参与者;低确定性证据)和下肢运动障碍测量(SMD 0.71,95%CI 0.15 至 1.28;P=0.01;1 项研究,51 名参与者;非常低确定性证据)方面,康复时间的增加更有利于康复。干预相关的严重不良事件(SAE)没有增加(RR 1.20,95%CI 0.51 至 2.85;P=0.68;I=0%;2 项研究,379 名参与者;低确定性证据),但很少有研究测量这些结局。与实验组和对照组之间的总康复时间差异较大的研究相比,与实验组和对照组之间的总康复时间差异较小的研究发现,康复时间的增加对 ADL 结局(P=0.02)和上肢活动测量(P=0.04)的改善更大,但对下肢活动测量(P=0.41)和上肢运动障碍测量(P=0.06)没有影响。

作者结论:中风后增加相同类型的康复时间不会对日常生活活动(如日常生活活动和上肢和下肢活动)等有意义的活动产生显著影响,但会对运动障碍测量产生较小的益处(所有发现的证据均为低至非常低确定性)。如果康复时间的增加超过一个阈值,可能会改善结局。目前,在临床实践中,没有足够的证据推荐一个最小的有益每日康复时间。本研究的结果受到缺乏在实验组和对照组之间提供的康复量存在显著差异的研究的限制。在所有康复活动中(不仅仅是干预性活动)测量时间,并在组间提供较大的康复量差异(最低 1000 分钟)的高质量、大型、设计良好的 RCT 可以提供进一步的证据,证明康复时间的影响。

相似文献

[1]
The effect of time spent in rehabilitation on activity limitation and impairment after stroke.

Cochrane Database Syst Rev. 2021-10-25

[2]
Occupational therapy for cognitive impairment in stroke patients.

Cochrane Database Syst Rev. 2022-3-29

[3]
Electronic cigarettes for smoking cessation.

Cochrane Database Syst Rev. 2021-9-14

[4]
Electronic cigarettes for smoking cessation.

Cochrane Database Syst Rev. 2022-11-17

[5]
Electronic cigarettes for smoking cessation.

Cochrane Database Syst Rev. 2025-1-29

[6]
Virtual reality for stroke rehabilitation.

Cochrane Database Syst Rev. 2025-6-20

[7]
Electronic cigarettes for smoking cessation.

Cochrane Database Syst Rev. 2024-1-8

[8]
Unconditional cash transfers for reducing poverty and vulnerabilities: effect on use of health services and health outcomes in low- and middle-income countries.

Cochrane Database Syst Rev. 2022-3-29

[9]
Non-pharmacological interventions for preventing delirium in hospitalised non-ICU patients.

Cochrane Database Syst Rev. 2021-11-26

[10]
Negative pressure wound therapy for surgical wounds healing by primary closure.

Cochrane Database Syst Rev. 2022-4-26

引用本文的文献

[1]
Combined action observation and motor imagery practice for upper limb recovery following stroke: a systematic review and meta-analysis.

Front Neurol. 2025-7-23

[2]
European Stroke Organisation (ESO) guideline on motor rehabilitation.

Eur Stroke J. 2025-5-22

[3]
Effect of virtual reality-based upper limb training on activity of daily living and quality of life among stroke survivors: a systematic review and meta-analysis.

J Neuroeng Rehabil. 2025-4-24

[4]
A randomized controlled trial of timing and dosage of upper extremity rehabilitation in virtual environments in persons with subacute stroke.

Sci Rep. 2025-4-22

[5]
How Can Robotic Devices Help Clinicians Determine the Treatment Dose for Post-Stroke Arm Paresis?

Sensors (Basel). 2025-3-6

[6]
Estimation of Upper Limb Motor Function and Its Use in Activities of Daily Living Based on the Performance Time Required for the Cylinder Transfer Task in Patients with Post-Stroke Mild Hemiparesis: A Cross-Sectional Study.

J Clin Med. 2025-2-26

[7]
Parvalbumin interneurons regulate rehabilitation-induced functional recovery after stroke and identify a rehabilitation drug.

Nat Commun. 2025-3-15

[8]
The association of upper limb sensorimotor capacity, everyday inpatient behavior, and the effects of neurorehabilitation in persons with multiple sclerosis and stroke: a mixed-design study.

J Neuroeng Rehabil. 2025-3-5

[9]
Physical rehabilitation approaches for the recovery of function and mobility following stroke.

Cochrane Database Syst Rev. 2025-2-11

[10]
The Impact of the Total Amount of Exercise Therapy on Post-Stroke Activities of Daily Living and Motor Function: A Meta-Analysis.

Brain Neurorehabil. 2024-10-22

本文引用的文献

[1]
A phase III, multi-arm multi-stage covariate-adjusted response-adaptive randomized trial to determine optimal early mobility training after stroke (AVERT DOSE).

Int J Stroke. 2023-7

[2]
Comparing Two Different Modes of Task Practice during Lower Limb Constraint-Induced Movement Therapy in People with Stroke: A Randomized Clinical Trial.

Neural Plast. 2021

[3]
Lessons Learned: The Difficulties of Incorporating Intensity Principles Into Inpatient Stroke Rehabilitation.

Arch Rehabil Res Clin Transl. 2020-4-13

[4]
Determining the optimal dose of reactive balance training after stroke: study protocol for a pilot randomised controlled trial.

BMJ Open. 2020-8-26

[5]
Higher Doses Improve Walking Recovery During Stroke Inpatient Rehabilitation.

Stroke. 2020-8-19

[6]
Impact of post-stroke disability and disability-perception on health-related quality of life of stroke survivors: the moderating effect of disability-severity.

Neurol Res. 2020-10

[7]
Dose-response of rPMS for upper Limb hemiparesis after stroke.

Medicine (Baltimore). 2020-6-12

[8]
Locomotor Kinematics and Kinetics Following High-Intensity Stepping Training in Variable Contexts Poststroke.

Neurorehabil Neural Repair. 2020-7

[9]
High-intensity arm resistance training does not lead to better outcomes than low-intensity resistance training in patients after subacute stroke: A randomized controlled trial.

J Rehabil Med. 2020-6-11

[10]
Dose and staffing comparison study of upper limb device-assisted therapy.

NeuroRehabilitation. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索