Shiogama Hideo, Hayashi Michiya, Hirota Nagio, Ogura Tomoo, Kim Hyungjun, Watanabe Masahiro
Earth System Division, National Institute for Environmental Studies, Tsukuba, Japan.
Moon Soul Graduate School of Future Strategy, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
Nat Commun. 2025 Jun 19;16(1):5293. doi: 10.1038/s41467-025-60385-1.
Recent studies have shown that the observed global warming trend over recent decades provides efficient constraints not only for future global mean temperature increases (ΔT) across Earth system models but also for changes in several climate variables that include significant ΔT-related uncertainty. However, ΔT-related emergent constraints (ECs) cannot reduce the uncertainty unrelated to ΔT. Here, to overcome this limitation, we develop an EC method and apply it to future changes in the annual maximum daily precipitation in order to reduce uncertainty therein. An EC for precipitation sensitivity based on historical extreme precipitation biases is combined with the constrained ΔT. This combined EC decreases the variance of the global mean precipitation by 42%, an improvement from only using temperature (resulting in 26% reduction), and the variance of regional precipitation by ≥ 30% in 24% of the globe (whereas ≥ 30% reduction is only seen in 2% of the globe with the temperature-related EC).
最近的研究表明,近几十年来观测到的全球变暖趋势不仅为地球系统模型未来的全球平均气温上升(ΔT)提供了有效约束,也为包括与显著ΔT相关不确定性的几个气候变量的变化提供了有效约束。然而,与ΔT相关的新兴约束(ECs)并不能减少与ΔT无关的不确定性。在此,为克服这一局限性,我们开发了一种EC方法,并将其应用于未来年最大日降水量的变化,以减少其中的不确定性。基于历史极端降水偏差的降水敏感性EC与受约束的ΔT相结合。这种组合的EC使全球平均降水量的方差降低了42%,相比仅使用温度(导致降低26%)有所改善,并且在全球24%的区域,区域降水量的方差降低了≥30%(而与温度相关的EC仅在全球2%的区域使降水量方差降低≥30%)。